Clozapine protects PC-12 cells from death due to oxidative stress induced by hydrogen peroxide via a cell-type specific mechanism involving inhibition of extracellular signal-regulated kinase phosphorylation.
نویسندگان
چکیده
Recent evidence suggests that some atypical antipsychotic drugs may protect against oxidative stress and consequent neurodegeneration by mechanisms that remain unclear. Using the neuron-like rat pheochromocytoma (PC-12) cell line, Clozapine and N-desmethylclozapine were tested for their ability to protect against cell death due to oxidative stress induced by hydrogen peroxide (H(2)O(2)). These drugs demonstrated significant protection of PC-12 cells, as measured by both the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium bromide (MTT) and Alamar Blue cell viability assays. However, neither viability assay detected a protective effect of Clozapine on human embryonic kidney (HEK293), rat primary cortical neurons, or human neuroblastoma (SH-SY5Y) exposed to H(2)O(2) treatment. The mechanism of protection involves a PC-12 cell-specific differential response to H(2)O(2) treatment vs. the other cell lines. Pre-treatment with 250 microM or 125 microM diethyldithiocarbamate (DETC), a superoxide dismutase (SOD) inhibitor, unexpectedly showed protection of the PC-12 cells from H(2)O(2) treatment. Western blots revealed that Clozapine, N-desmethylclozapine, and DETC reduce the phosphorylation of extracellular signal-regulated kinase (ERK) that is caused by H(2)O(2) exposure in PC-12 cells. In both HEK293 and SH-SY5Y cells, H(2)O(2) exposure did not increase ERK phosphorylation over control, demonstrating a different response to H(2)O(2) vs. PC-12 cells, and explaining why Clozapine could not protect these cells. Also, U0126, a specific MEK inhibitor, was able to protect PC-12 cells from H(2)O(2) exposure, showing that inhibiting ERK phosphorylation is sufficient to provide protection. Cumulatively, these results indicate that Clozapine, N-desmethylclozapine, DETC, and U0126 protect PC-12 cells by blocking the cell-type specific H(2)O(2) induced increase in ERK phosphorylation.
منابع مشابه
Tryptanthrin protects hepatocytes against oxidative stress via activation of the extracellular signal-regulated kinase/NF-E2-related factor 2 pathway.
Tryptanthrin [6,12-dihydro-6,12-dioxoindolo-(2,1-b)-quinazoline], originally isolated from Isatidis radix, has been characterized as having anti-microbial and anti-tumor activities. It is well-known that excess oxidative stress is one of the major factors causing cell damage in the liver. This study investigated the cytoprotective effects and molecular mechanism of tryptanthrin against tert-but...
متن کاملModulation of H2O2- Induced Neurite Outgrowth Impairment and Apoptosis in PC12 Cells by a 1,2,4-Triazine Derivative
Introduction: Increased oxidative stress is widely accepted to be a factor in the development and progression of Alzheimer’s disease. Triazine derivatives possess a wide range of pharmacological activities including anti-oxidative and anti-in.ammatory actions. In this study, we aimed to investigate the possible protective effect of 3-thioethyl-5,6-dimethoxyphenyl-1,2,4-triazine (TEDMT) on H2O2-...
متن کاملProtective Effect of an Isoflavone, Tectorigenin, Against Oxidative Stress-induced Cell Death via Catalase Activation
BACKGROUND Isoflavones are biologically active compounds that occur naturally in a variety of plants, with relatively high levels in soybean. Tectorigenin, an isoflavone, protects against hydrogen peroxide (H2O2)-induced cell damage. However, the underlying mechanism is unknown. METHODS The MTT assay was performed to determine cell viability. Catalase activity was assessed by determining the ...
متن کاملRole of the ERK Pathway for Oxidant-Induced Parthanatos in Human Lymphocytes
Reactive oxygen species (ROS) are formed by myeloid cells as a defense strategy against microorganisms. ROS however also trigger poly(ADP-ribose) polymerase 1- (PARP-1) dependent cell death (parthanatos) in adjacent lymphocytes, which has been forwarded as a mechanism of immune escape in several forms of cancer. The present study assessed the role of mitogen-activated protein kinases (MAPKs), i...
متن کاملMorphogenic protein epimorphin protects intestinal epithelial cells from oxidative stress by the activation of EGF receptor and MEK/ERK, PI3 kinase/Akt signals.
Epimorphin is a mesenchymal protein that regulates morphogenesis of epithelial cells. Our preliminary study suggested a novel function of epimorphin in enhancing survival of intestinal epithelial cells (IEC). Oxidative stress leads to cell injury and death and is suggested to be a key contributor to pathogenesis of inflammatory bowel disease. This study was conducted to determine whether epimor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain research
دوره 1283 شماره
صفحات -
تاریخ انتشار 2009