Neural Machine Translation of Rare Words with Subword Units

نویسندگان

  • Rico Sennrich
  • Barry Haddow
  • Alexandra Birch
چکیده

Neural machine translation (NMT) models typically operate with a fixed vocabulary, but translation is an open-vocabulary problem. Previous work addresses the translation of out-of-vocabulary words by backing off to a dictionary. In this paper, we introduce a simpler and more effective approach, making the NMT model capable of open-vocabulary translation by encoding rare and unknown words as sequences of subword units. This is based on the intuition that various word classes are translatable via smaller units than words, for instance names (via character copying or transliteration), compounds (via compositional translation), and cognates and loanwords (via phonological and morphological transformations). We discuss the suitability of different word segmentation techniques, including simple character ngram models and a segmentation based on the byte pair encoding compression algorithm, and empirically show that subword models improve over a back-off dictionary baseline for the WMT 15 translation tasks English→German and English→Russian by up to 1.1 and 1.3 BLEU, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morpheme-Aware Subword Segmentation for Neural Machine Translation

Neural machine translation together with subword segmentation has recently produced state-of-the-art translation performance. The commonly used segmentation algorithm based on byte-pair encoding (BPE) does not consider the morphological structure of words. This occasionally causes misleading segmentation and incorrect translation of rare words. In this thesis we explore the use of morphological...

متن کامل

Providing Morphological Information for SMT Using Neural Networks

Treating morphologically complex words (MCWs) as atomic units in translation would not yield a desirable result. Such words are complicated constituents with meaningful subunits. A complex word in a morphologically rich language (MRL) could be associated with a number of words or even a full sentence in a simpler language, which means the surface form of complex words should be accompanied with...

متن کامل

Word, Subword or Character? An Empirical Study of Granularity in Chinese-English NMT

Neural machine translation (NMT), a new approach to machine translation, has been proved to outperform conventional statistical machine translation (SMT) across a variety of language pairs. Translation is an open-vocabulary problem, but most existing NMT systems operate with a fixed vocabulary, which causes the incapability of translating rare words. This problem can be alleviated by using diff...

متن کامل

University of Rochester WMT 2017 NMT System Submission

We describe the neural machine translation system submitted by the University of Rochester to the Chinese-English language pair for the WMT 2017 news translation task. We applied unsupervised word and subword segmentation techniques and deep learning in order to address (i) the word segmentation problem caused by the lack of delimiters between words and phrases in Chinese and (ii) the morpholog...

متن کامل

Literature Survey: Study of Neural Machine Translation

We build Neural Machine Translation (NMT) systems for EnglishHindi,Bengali-Hindi and Gujarati-Hindi with two different units of translation i.e. word and subword and present a comparative study of subword NMT and word level NMT systems, along with strong results and case studies. We train attention-based encoder-decoder model for word level and use Byte Pair Encoding (BPE) in subword NMT for wo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1508.07909  شماره 

صفحات  -

تاریخ انتشار 2016