Adiponectin Ameliorates Iron-Overload Cardiomyopathy through the PPARa–PGC-1–Dependent Signaling Pathway
نویسندگان
چکیده
Adiponectin is a circulating adipose-derived cytokine that may act as an antioxidative and anti-inflammatory protein. Although adiponectin has been reported to exert cytoprotective effects in acute cardiac diseases, its effects on chronic heart failure are less clear. Therefore, we aimed to investigate whether adiponectin would have a beneficial effect in iron-induced chronic heart failure and to elucidate its regulation in cardiomyocytes. Mice were first treated with iron dextran for 4 weeks to induce iron-overload cardiomyopathy. They exhibited decreased survival with impaired left ventricle contractility and decreased serum adiponectin levels. In vivo cardiac adiponectin gene (ADIPOQ) overexpression with adenoassociated virus (AAV)ADIPOQ ameliorated cardiac iron deposition and restored cardiac function in iron-overloaded mice. In addition, AAVADIPOQ–treated iron-overload mice had lower expression of inflammatory markers, including myeloperoxidase activity, monocyte chemotactic protein-1, tumor necrosis factor-a, interleukin-6, and intercellular adhesion molecule-1, than iron-overloaded mice not treated with AAV-ADIPOQ. Our in vitro study showed that adiponectin induced heme oxygenase-1 (HO-1) expression through the peroxisome proliferator-activated receptor (PPAR)a– HO-1 signaling pathway. Furthermore, the adiponectin-mediated beneficial effects were PPARa-dependent as the adiponectinmediated attenuation of iron deposition was abolished in PPARa-knockout mice. Finally, PPARa–HO-1 signaling involved PPARa and peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) binding and nuclear translocation, and their levels were increased by adiponectin therapy. Together, these findings suggest that adiponectin acts as an antiinflammatory signaling molecule and induces the expression of HO-1 through the PPARa–PGC-1 complex–dependent pathway in cardiomyocytes, resulting in the attenuation of iron-induced cardiomyopathy. Using adiponectin for adjuvant therapies in iron-overload cardiac dysfunction may be an option in the future.
منابع مشابه
Adiponectin ameliorates iron-overload cardiomyopathy through the PPARα-PGC-1-dependent signaling pathway.
Adiponectin is a circulating adipose-derived cytokine that may act as an antioxidative and anti-inflammatory protein. Although adiponectin has been reported to exert cytoprotective effects in acute cardiac diseases, its effects on chronic heart failure are less clear. Therefore, we aimed to investigate whether adiponectin would have a beneficial effect in iron-induced chronic heart failure and ...
متن کاملAdipoRon may be benefit for atherosclerosis prevention
Atherosclerosis has serious role in coronary arteries disease,so it is important to establish effective strategies for prevention or even treatment of atherosclerosis. Adiponectin, as one of the most abundant adipokines, has insulin sensitivity, anti-inflammatory and anti-atherogenic properties. Disturbed adiponectin actions through its receptor, (AdipoR1 and AdipoR2) may be involved in atheros...
متن کاملProoxidant Mechanisms in Iron Overload Cardiomyopathy
Iron overload cardiomyopathy (IOC), defined as the presence of systolic or diastolic cardiac dysfunction secondary to increased deposition of iron, is emerging as an important cause of heart failure due to the increased incidence of this disorder seen in thalassemic patients and in patients of primary hemochromatosis. At present, although palliative treatment by regular iron chelation was recom...
متن کاملG protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy.
Peroxisome proliferator-activated receptor gamma coactivator 1-alpha 4 (PGC-1α4) is a protein isoform derived by alternative splicing of the PGC1α mRNA and has been shown to promote muscle hypertrophy. We show here that G protein-coupled receptor 56 (GPR56) is a transcriptional target of PGC-1α4 and is induced in humans by resistance exercise. Furthermore, the anabolic effects of PGC-1α4 in cul...
متن کاملEupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کامل