Warm Body Temperature Facilitates Energy Efficient Cortical Action Potentials
نویسندگان
چکیده
The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na(+) channel inactivation, resulting in a marked reduction in overlap of the inward Na(+), and outward K(+), currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na(+) entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37-42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code.
منابع مشابه
Spinal cord thermosensitivity: An afferent phenomenon?
We review the evidence for thermoregulatory temperature sensors in the mammalian spinal cord and reach the following conclusions. 1) Spinal cord temperature contributes physiologically to temperature regulation. 2) Parallel anterolateral ascending pathways transmit signals from spinal cooling and spinal warming: they overlap with the respective axon pathways of the dorsal horn neurons that are ...
متن کاملTypical gray matter axons in mammalian brain fail to conduct action potentials faithfully at fever‐like temperatures
We studied the ability of typical unmyelinated cortical axons to conduct action potentials at fever-like temperatures because fever often gives CNS symptoms. We investigated such axons in cerebellar and hippocampal slices from 10 to 25 days old rats at temperatures between 30 and 43°C. By recording with two electrodes along axonal pathways, we confirmed that the axons were able to initiate acti...
متن کاملA model of the detection of warmth and cold by cutaneous sensors through effects on voltage-gated membrane channels.
Warmth and cold sensations are known to derive from separate warm and cold cutaneous thermoreceptors in the form of differentiated afferent nerves. The firing rate of warm-sensing nerves increases as the temperature increases; the firing rate of cold-sensing nerves increases if the temperature is reduced. I postulate that the primary sensitivity of the warm sensors derives from voltage-gated Ca...
متن کاملUpdated energy budgets for neural computation in the neocortex and cerebellum.
The brain's energy supply determines its information processing power, and generates functional imaging signals. The energy use on the different subcellular processes underlying neural information processing has been estimated previously for the grey matter of the cerebral and cerebellar cortex. However, these estimates need reevaluating following recent work demonstrating that action potential...
متن کاملAn energy budget for signaling in the grey matter of the brain.
Anatomic and physiologic data are used to analyze the energy expenditure on different components of excitatory signaling in the grey matter of rodent brain. Action potentials and postsynaptic effects of glutamate are predicted to consume much of the energy (47% and 34%, respectively), with the resting potential consuming a smaller amount (13%), and glutamate recycling using only 3%. Energy usag...
متن کامل