Functional magnetic resonance inverse imaging of human visuomotor systems using eigenspace linearly constrained minimum amplitude (eLCMA) beamformer

نویسندگان

  • Shr-Tai Liou
  • Thomas Witzel
  • Aapo Nummenmaa
  • Wei-Tang Chang
  • Kevin Wen-Kai Tsai
  • Wen-Jui Kuo
  • Hsiao-Wen Chung
  • Fa-Hsuan Lin
چکیده

Recently proposed dynamic magnetic resonance (MR) inverse imaging (InI) is a novel parallel imaging reconstruction technique capable of improving the temporal resolution of blood-oxygen level-dependent (BOLD) contrast functional MRI (fMRI) to the order of milliseconds at the cost of moderate spatial resolution. Volumetric InI reconstructs spatial information from projection data by solving ill-posed inverse problems using simultaneous acquisitions from a RF coil array. Previously a spatial filtering technique based on linearly constrained minimum variance (LCMV) beamformer was suggested to localize the hemodynamic changes of dynamic InI data with improved spatial resolution and sensitivity. Here we report an advancement of the spatial filtering method, which combines the eigenspace projection of the measured data and the L1-norm minimization of the spatial filters' output noise amplitude, to further improve the detection power of BOLD contrast fMRI data. Using numerical simulation and in vivo data, we demonstrate that this eigenspace linearly constrained minimum amplitude (eLCMA) beamformer can reconstruct spatiotemporal hemodynamic signals with high statistical significance values and high spatial resolution in event-related two-choice reaction time visuomotor experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenspace Minimum L1-Norm Beamformer Reconstruction of Functional Magnetic Resonance Inverse Imaging of Visuomotor Processing

INTRODUCTION Dynamic magnetic resonance (MR) inverse imaging (InI) can improve the temporal resolution of blood oxygen level dependent (BOLD) contrasts fMRI to the order of milliseconds [1]. In InI, the spatial resolution and the source localization accuracy both critically rely on the signal-to-noise ratio (SNR) of the measurements [1]. The localization of the functional activity in ill-posed ...

متن کامل

Beamforming Techniques Applied in EEG Source Analysis

The electrical activity of the human brain causes time-varying potential differences on the head surface. The electroencephalogram (EEG) is a measurement of these potential differences between electrodes on the head. When the electrical brain activity is limited to a small region in the brain (e.g., during epileptic seizures), the source region within the brain can be localised by analysing the...

متن کامل

Analytical determination of the chemical exchange saturation transfer (CEST) contrast in molecular magnetic resonance imaging

Magnetic resonance based on molecular imaging allows tracing contrast agents thereby facilitating early diagnosis of diseases in a non-invasive fashion that enhances the soft tissue with high spatial resolution. Recently, the exchange of protons between the contrast agent and water, known as the chemical exchange saturation transfer (CEST) effect, has been measured by applying a suitable pulse ...

متن کامل

K-space reconstruction of magnetic resonance inverse imaging (K-InI) of human visuomotor systems

Using simultaneous measurements from multiple channels of a radio-frequency coil array, magnetic resonance inverse imaging (InI) can achieve ultra-fast dynamic functional imaging of the human with whole-brain coverage and a good spatial resolution. Mathematically, the InI reconstruction is a generalization of parallel MRI (pMRI), which includes image space and k-space reconstructions. Because o...

متن کامل

Application of an MEG eigenspace beamformer to reconstructing spatio-temporal activities of neural sources.

We have applied the eigenspace-based beamformer to reconstruct spatio-temporal activities of neural sources from MEG data. The weight vector of the eigenspace-based beamformer is obtained by projecting the weight vector of the minimum-variance beamformer onto the signal subspace of a measurement covariance matrix. This projection removes the residual noise-subspace component that considerably d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 55 1  شماره 

صفحات  -

تاریخ انتشار 2011