Domain analysis of protein P30 in Mycoplasma pneumoniae cytadherence and gliding motility.

نویسندگان

  • How-Yi Chang
  • Jarrat L Jordan
  • Duncan C Krause
چکیده

The cell wall-less prokaryote Mycoplasma pneumoniae causes bronchitis and atypical pneumonia in humans. Mycoplasma attachment and gliding motility are required for colonization of the respiratory epithelium and are mediated largely by a differentiated terminal organelle. P30 is a membrane protein at the distal end of the terminal organelle and is required for cytadherence and gliding motility, but little is known about the functional role of its specific domains. In the current study, domain deletion and substitution derivatives of P30 were engineered and introduced into a P30 null mutant by transposon delivery to assess their ability to rescue P30 function. Domain deletions involving the extracellular region of P30 severely impacted protein stability and adherence and gliding function, as well as the capacity to stabilize terminal organelle protein P65. Amino acid substitutions in the transmembrane domain revealed specific residues uniquely required for P30 stability and function, perhaps to establish correct topography in the membrane for effective alignment with binding partners. Deletions within the predicted cytoplasmic domain did not affect P30 localization or its capacity to stabilize P65 but markedly impaired gliding motility and cytadherence. The larger of two cytoplasmic domain deletions also appeared to remove the P30 signal peptide processing site, suggesting a larger leader peptide than expected. We propose that the P30 cytoplasmic domain may be required to link P30 to the terminal organelle core, to enable the P30 extracellular domain to achieve a functional conformation, or perhaps both.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P65 truncation impacts P30 dynamics during Mycoplasma pneumoniae gliding.

The cell wall-less prokaryote Mycoplasma pneumoniae is a major cause of community-acquired bronchitis and pneumonia in humans. Colonization is mediated largely by a differentiated terminal organelle, which is also the leading end in gliding motility. Cytadherence-associated proteins P30 and P65 appear to traffic concurrently to the distal end of developing terminal organelles. Here, truncation ...

متن کامل

Cloning, expression, and immunological characterization of the P30 protein of Mycoplasma pneumoniae.

Mycoplasma pneumoniae, a self-replicating cell wall-deficient prokaryote, has a differentiated terminal organelle that is essential for cytadherence and gliding motility. P30, an important protein associated with the terminal organelle, is required for the cytadherence and virulence of M. pneumoniae. P30 is a transmembrane protein with an intracytoplasmic N terminus and an exposed C terminus. I...

متن کامل

Mutant analysis reveals a specific requirement for protein P30 in Mycoplasma pneumoniae gliding motility.

The cell-wall-less prokaryote Mycoplasma pneumoniae, long considered among the smallest and simplest cells capable of self-replication, has a distinct cellular polarity characterized by the presence of a differentiated terminal organelle which functions in adherence to human respiratory epithelium, gliding motility, and cell division. Characterization of hemadsorption (HA)-negative mutants has ...

متن کامل

Attachment organelle formation represented by localization of cytadherence proteins and formation of the electron-dense core in wild-type and mutant strains of Mycoplasma pneumoniae.

Cytadherence proteins of Mycoplasma pneumoniae are localized at the attachment organelle, which is involved in adhesion, gliding motility, and cell division. The localization of these proteins in cytadherence-deficient mutants was examined by immunofluorescence microscopy. In the class I-2 mutant, which has a frameshift mutation in the hmw2 gene, fluorescent foci for HMW1 and HMW3 were found wi...

متن کامل

Protein P200 is dispensable for Mycoplasma pneumoniae hemadsorption but not gliding motility or colonization of differentiated bronchial epithelium.

Mycoplasma pneumoniae protein P200 was localized to the terminal organelle, which functions in cytadherence and gliding motility. The loss of P200 had no impact on binding to erythrocytes and A549 cells but resulted in impaired gliding motility and colonization of differentiated bronchial epithelium. Thus, gliding may be necessary to overcome mucociliary clearance.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 193 7  شماره 

صفحات  -

تاریخ انتشار 2011