Distributed Nonlocal Feedback Delays May Destabilize Fronts in Neural Fields, Distributed Transmission Delays Do Not

نویسندگان

  • Axel Hutt
  • Linghai Zhang
چکیده

The spread of activity in neural populations is a well-known phenomenon. To understand the propagation speed and the stability of stationary fronts in neural populations, the present work considers a neural field model that involves intracortical and cortico-cortical synaptic interactions. This includes distributions of axonal transmission speeds and nonlocal feedback delays as well as general classes of synaptic interactions. The work proves the spectral stability of standing and traveling fronts subject to general transmission speeds for large classes of spatial interactions and derives conditions for the front instabilities subjected to nonlocal feedback delays. Moreover, it turns out that the uniqueness of the stationary traveling fronts guarantees its exponential stability for vanishing feedback delay. Numerical simulations complement the analytical findings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of nonlocal feedback on traveling fronts in neural fields subject to transmission delay.

The work introduces a model for reciprocal connections in neural fields by a nonlocal feedback mechanism, while the neural field exhibits nonlocal interactions and intra-areal transmission delays. We study the speed of traveling fronts with respect to the transmission delay, the spatial feedback range, and the feedback delay for general axonal and feedback connectivity kernels. In addition, we ...

متن کامل

Neural Fields with Distributed Transmission Speeds and Long-Range Feedback Delays

We introduce distributed axonal transmission speeds and a long-range constant feedback loop into the standard neural field model. We analyze the stability of spatially homogeneous equilibrium solutions for general connectivity kernels. By studying reduced models based on the assumption of small delays, we determine the effects of the delays on the stability and bifurcations. We show in a reduce...

متن کامل

ADAPTIVE FUZZY TRACKING CONTROL FOR A CLASS OF NONLINEAR SYSTEMS WITH UNKNOWN DISTRIBUTED TIME-VARYING DELAYS AND UNKNOWN CONTROL DIRECTIONS

In this paper, an adaptive fuzzy control scheme is proposed for a class of perturbed strict-feedback nonlinear systems with unknown discrete and distributed time-varying delays, and the proposed design method does not require a priori knowledge of the signs of the control gains.Based on the backstepping technique, the adaptive fuzzy controller is constructed. The main contributions of the paper...

متن کامل

Eigenvalue Assignment Of Discrete-Time Linear Systems With State And Input Time-Delays

Time-delays are important components of many dynamical systems that describe coupling or interconnection between dynamics, propagation or transport phenomena, and heredity and competition in population dynamics. The stabilization with time delay in observation or control represents difficult mathematical challenges in the control of distributed parameter systems. It is well-known that the stabi...

متن کامل

Linear matrix inequality approach for synchronization of chaotic fuzzy cellular neural networks with discrete and unbounded distributed delays based on sampled-data control

In this paper, linear matrix inequality (LMI) approach for synchronization of chaotic fuzzy cellular neural networks (FCNNs) with discrete and unbounded distributed delays based on sampled-data controlis investigated. Lyapunov-Krasovskii functional combining with the input delay approach as well as the free-weighting matrix approach are employed to derive several sufficient criteria in terms of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013