Generalizations of the Karatsuba Algorithm for Efficient Implementations

نویسندگان

  • André Weimerskirch
  • Christof Paar
چکیده

In this work we generalize the classical Karatsuba Algorithm (KA) for polynomial multiplication to (i) polynomials of arbitrary degree and (ii) recursive use. We determine exact complexity expressions for the KA and focus on how to use it with the least number of operations. We develop a rule for the optimum order of steps if the KA is used recursively. We show how the usage of dummy coefficients may improve performance. Finally we provide detailed information on how to use the KA with least cost, and also provide tables that describe the best possible usage of the KA for polynomials up to a degree of 127. Our results are especially useful for efficient implementations of cryptographic and coding schemes over fixed-size fields like GF (p).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalable Systolic Multiplier over Binary Extension Fields Based on Two-Level Karatsuba Decomposition

Shifted polynomial basis (SPB) is a variation of polynomial basis representation. SPB has potential for efficient bit level and digi -level implementations of multiplication over binary extension fields with subquadratic space complexity. For efficient implementation of pairing computation with large finite fields, this paper presents a new SPB multiplication algorithm based on Karatsuba scheme...

متن کامل

Overlap-free Karatsuba-Ofman Polynomial Multiplication Algorithms for Hardware Implementations

We describe how a simple way to split input operands allows for fast VLSI implementations of subquadratic GF (2)[x] Karatsuba-Ofman multipliers. The theoretical XOR gate delay of the resulting multipliers is reduced significantly. For example, it is reduced by about 33% and 25% for n = 2 and n = 3 (t > 1), respectively. To the best of our knowledge, this parameter has never been improved since ...

متن کامل

Binary field multiplication on ARMv8

In this paper, we show efficient implementations of binary field multiplication over ARMv8. We exploit an advanced 64-bit polynomial multiplication (PMULL) supported by ARMv8 and conduct multiple levels of asymptotically faster Karatsuba multiplication. Finally, our method conducts binary field multiplication within 57 clock cycles for B-251. Our proposed method on ARMv8 improves the performanc...

متن کامل

GPU-Based Implementation of 128-Bit Secure Eta Pairing over a Binary Field

Eta pairing on a supersingular elliptic curve over the binary field F21223 used to offer 128-bit security, and has been studied extensively for efficient implementations. In this paper, we report our GPUbased implementations of this algorithm on an NVIDIA Tesla C2050 platform. We propose efficient parallel implementation strategies for multiplication, square, square root and inverse in the unde...

متن کامل

Efficient elliptic curve cryptosystems

Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2006  شماره 

صفحات  -

تاریخ انتشار 2006