Escherichia coli class Ib ribonucleotide reductase contains a dimanganese(III)-tyrosyl radical cofactor in vivo.

نویسندگان

  • Joseph A Cotruvo
  • Joanne Stubbe
چکیده

Escherichia coli class Ib ribonucleotide reductase (RNR) converts nucleoside 5'-diphosphates to deoxynucleoside 5'-diphosphates in iron-limited and oxidative stress conditions. We have recently demonstrated in vitro that this RNR is active with both diferric-tyrosyl radical (Fe(III)(2)-Y(•)) and dimanganese(III)-Y(•) (Mn(III)(2)-Y(•)) cofactors in the β2 subunit, NrdF [Cotruvo, J. A., Jr., and Stubbe, J. (2010) Biochemistry 49, 1297-1309]. Here we demonstrate, by purification of this protein from its endogenous levels in an E. coli strain deficient in its five known iron uptake pathways and grown under iron-limited conditions, that the Mn(III)(2)-Y(•) cofactor is assembled in vivo. This is the first definitive determination of the active cofactor of a class Ib RNR purified from its native organism without overexpression. From 88 g of cell paste, 150 μg of NrdF was isolated with ∼95% purity, with 0.2 Y(•)/β2, 0.9 Mn/β2, and a specific activity of 720 nmol min(-1) mg(-1). Under these conditions, the class Ib RNR is the primary active RNR in the cell. Our results strongly suggest that E. coli NrdF is an obligate manganese protein in vivo and that the Mn(III)(2)-Y(•) cofactor assembly pathway we have identified in vitro involving the flavodoxin-like protein NrdI, present inside the cell at catalytic levels, is operative in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of metallation and active cofactor assembly in the class Ia and Ib ribonucleotide reductases: diiron or dimanganese?

Ribonucleotide reductases (RNRs) convert nucleotides to deoxynucleotides in all organisms. Activity of the class Ia and Ib RNRs requires a stable tyrosyl radical (Yⁱ), which can be generated by the reaction of O2 with a diferrous cluster on the β subunit to form active diferric-Yⁱ cofactor. Recent experiments have demonstrated, however, that in vivo the class Ib RNR contains an active dimangane...

متن کامل

An active dimanganese(III)-tyrosyl radical cofactor in Escherichia coli class Ib ribonucleotide reductase.

Escherichia coli class Ib ribonucleotide reductase (RNR) converts nucleoside 5'-diphosphates to deoxynucleoside 5'-diphosphates and is expressed under iron-limited and oxidative stress conditions. This RNR is composed of two homodimeric subunits: alpha2 (NrdE), where nucleotide reduction occurs, and beta2 (NrdF), which contains an unidentified metallocofactor that initiates nucleotide reduction...

متن کامل

The dimanganese(II) site of Bacillus subtilis class Ib ribonucleotide reductase.

Class Ib ribonucleotide reductases (RNRs) use a dimanganese-tyrosyl radical cofactor, Mn(III)(2)-Y(•), in their homodimeric NrdF (β2) subunit to initiate reduction of ribonucleotides to deoxyribonucleotides. The structure of the Mn(II)(2) form of NrdF is an important component in understanding O(2)-mediated formation of the active metallocofactor, a subject of much interest because a unique fla...

متن کامل

Bacillus subtilis class Ib ribonucleotide reductase is a dimanganese(III)-tyrosyl radical enzyme.

Bacillus subtilis class Ib ribonucleotide reductase (RNR) catalyzes the conversion of nucleotides to deoxynucleotides, providing the building blocks for DNA replication and repair. It is composed of two proteins: α (NrdE) and β (NrdF). β contains the metallo-cofactor, essential for the initiation of the reduction process. The RNR genes are organized within the nrdI-nrdE-nrdF-ymaB operon. Each p...

متن کامل

NrdI, a flavodoxin involved in maintenance of the diferric-tyrosyl radical cofactor in Escherichia coli class Ib ribonucleotide reductase.

Ribonucleotide reductase (RNR) catalyzes the conversion of nucleotides to deoxynucleotides and is essential in all organisms. Class I RNRs consist of two homodimeric subunits: alpha2 and beta2. The alpha subunit contains the site of nucleotide reduction, and the beta subunit contains the essential diferric-tyrosyl radical (Y*) cofactor. Escherichia coli contains genes encoding two class I RNRs ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 50 10  شماره 

صفحات  -

تاریخ انتشار 2011