Semi-stability of embedded solitons in the general fifth-order KdV equation
نویسندگان
چکیده
Evolution of perturbed embedded solitons in the general Hamiltonian fifth-order Korteweg–de Vries (KdV) equation is studied. When an embedded soliton is perturbed, it sheds a one-directional continuous-wave radiation. It is shown that the radiation amplitude is not minimal in general. A dynamical equation for velocity of the perturbed embedded soliton is derived. This equation shows that a neutrally stable embedded soliton is in fact semi-stable. When the perturbation increases the momentum of the embedded soliton, the perturbed state approaches asymptotically the embedded soliton, while when the perturbation reduces the momentum of the embedded soliton, the perturbed state decays into radiation. Classes of initial conditions to induce soliton decay or persistence are also determined. Our analytical results are confirmed by direct numerical simulations of the fifth-order KdV equation. © 2002 Elsevier Science B.V. All rights reserved.
منابع مشابه
Dynamics of Embedded Solitons in the Extended Korteweg–de Vries Equations
Embedded solitons are solitary waves residing inside the continuous spectrum of a wave system. They have been discovered in a wide array of physical situations recently. In this article, we present the first comprehensive theory on the dynamics of embedded solitons and nonlocal solitary waves in the framework of the perturbed fifth-order Korteweg–de Vries (KdV) hierarchy equation. Our method is...
متن کاملA Dual-petrov-galerkin Method for Two Integrable Fifth-order Kdv Type Equations
This paper extends the dual-Petrov-Galerkin method proposed by Shen [21], further developed by Yuan, Shen and Wu [27] to general fifth-order KdV type equations with various nonlinear terms. These fifth-order equations arise in modeling different wave phenomena. The method is implemented to compute the multi-soliton solutions of two representative fifth-order KdV equations: the Kaup-Kupershmidt ...
متن کاملTwo-pulse Solutions in the Fifth-order Kdv Equation: Rigorous Theory and Numerical Approximations
We revisit existence and stability of two-pulse solutions in the fifth-order Korteweg–de Vries (KdV) equation with two new results. First, we modify the Petviashvili method of successive iterations for numerical (spectral) approximations of pulses and prove convergence of iterations in a neighborhood of two-pulse solutions. Second, we prove structural stability of embedded eigenvalues of negati...
متن کاملAdomian Polynomial and Elzaki Transform Method of Solving Fifth Order Korteweg-De Vries Equation
Elzaki transform and Adomian polynomial is used to obtain the exact solutions of nonlinear fifth order Korteweg-de Vries (KdV) equations. In order to investigate the effectiveness of the method, three fifth order KdV equations were considered. Adomian polynomial is introduced as an essential tool to linearize all the nonlinear terms in any given equation because Elzaki transform cannot handle n...
متن کاملCompacton solutions in a class of generalized fifth-order Korteweg-de Vries equations.
Solitons play a fundamental role in the evolution of general initial data for quasilinear dispersive partial differential equations, such as the Korteweg-de Vries (KdV), nonlinear Schrödinger, and the Kadomtsev-Petviashvili equations. These integrable equations have linear dispersion and the solitons have infinite support. We have derived and investigate a new KdV-like Hamiltonian partial diffe...
متن کامل