Measurements of the free luminal ER Ca(2+) concentration with targeted "cameleon" fluorescent proteins.

نویسندگان

  • Nicolas Demaurex
  • Maud Frieden
چکیده

The free ER Ca(2+) concentration, [Ca(2+)](ER), is a key parameter that determines both the spatio-temporal pattern of Ca(2+) signals as well as the activity of ER-resident enzymes. Obtaining accurate, time-resolved measurements of the Ca(2+) activity within the ER is thus critical for our understanding of cell signaling. Such measurements, however, are particularly challenging given the highly dynamic nature of Ca(2+) signals, the complex architecture of the ER, and the difficulty of addressing probes specifically into the ER lumen. Prompted by these challenges, a number of ingenious approaches have been developed over the last years to measure ER Ca(2+) by optical means. The two main strategies used to date are Ca(2+)-sensitive synthetic dyes trapped into organelles and genetically encoded probes, based either on the photoprotein aequorin or on the green fluorescent protein (GFP). The GFP-based Ca(2+) indicators comprise the camgaroo and pericam probes based on a circularly permutated GFP, and the cameleon probes, which rely on the fluorescence resonance energy transfer (FRET) between two GFP mutants of different colors. Each approach offers unique advantages and suffers from specific drawbacks. In this review, we will discuss the advantages and pitfalls of using the genetically encoded "cameleon" Ca(2+) indicators for ER Ca(2+) measurements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Imaging of Endoplasmic Reticulum Ca Concentration in Insulin-Secreting MIN6 Cells Using Recombinant Targeted Cameleons Roles of Sarco(endo)plasmic Reticulum Ca -ATPase (SERCA)-2 and Ryanodine Receptors

The endoplasmic reticulum (ER) plays a pivotal role in the regulation of cytosolic Ca concentrations ([Ca ]cyt) and hence in insulin secretion from pancreatic -cells. However, the molecular mechanisms involved in both the uptake and release of Ca from the ER are only partially defined in these cells, and the presence and regulation of ER ryanodine receptors are a matter of particular controvers...

متن کامل

Analyses of Ca2+ accumulation and dynamics in the endoplasmic reticulum of Arabidopsis root cells using a genetically encoded Cameleon sensor.

In planta, very limited information is available about how the endoplasmic reticulum (ER) contributes to cellular Ca(2+) dynamics and homeostasis. Here, we report the generation of an ER-targeted Cameleon reporter protein suitable for analysis of Ca(2+) accumulation and dynamics in the lumen of the ER in plant cells. Using stably transformed Arabidopsis (Arabidopsis thaliana) plants expressing ...

متن کامل

GFP-Aequorin Protein Sensor for Ex Vivo and In Vivo Imaging of Ca(2+) Dynamics in High-Ca(2+) Organelles.

Proper functioning of organelles such as the ER or the Golgi apparatus requires luminal accumulation of Ca(2+) at high concentrations. Here we describe a ratiometric low-affinity Ca(2+) sensor of the GFP-aequorin protein (GAP) family optimized for measurements in high-Ca(2+) concentration environments. Transgenic animals expressing the ER-targeted sensor allowed monitoring of Ca(2+) signals ins...

متن کامل

Characterization of the ER-Targeted Low Affinity Ca2+ Probe D4ER

Calcium ion (Ca(2+)) is a ubiquitous intracellular messenger and changes in its concentration impact on nearly every aspect of cell life. Endoplasmic reticulum (ER) represents the major intracellular Ca(2+) store and the free Ca(2+) concentration ([Ca(2+)]) within its lumen ([Ca(2+)]ER) can reach levels higher than 1 mM. Several genetically-encoded ER-targeted Ca(2+) sensors have been developed...

متن کامل

Fine-tuning of the cytoplasmic Ca2+ concentration is essential for pollen tube growth.

Pollen tube growth is crucial for the delivery of sperm cells to the ovule during flowering plant reproduction. Previous in vitro imaging of Lilium longiflorum and Nicotiana tabacum has shown that growing pollen tubes exhibit a tip-focused Ca(2+) concentration ([Ca(2+)]) gradient and regular oscillations of the cytosolic [Ca(2+)] ([Ca(2+)](cyt)) in the tip region. Whether this [Ca(2+)] gradient...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell calcium

دوره 34 2  شماره 

صفحات  -

تاریخ انتشار 2003