A Tractable Approximation of Stochastic Programming via Robust Optimization
نویسندگان
چکیده
Stochastic programming, despite its immense modeling capabilities, is well known to be computationally excruciating. In this paper, we introduce a unified framework of approximating multiperiod stochastic programming from the perspective of robust optimization. Specifically, we propose a framework that integrates multistage modeling with safeguarding constraints. The framework is computationally tractable in the form of second order cone programming (SOCP) and scalable across periods. We compare the computational performance of our proposal with classical stochastic programming approach using sampling approximations and report very encouraging results for a class of project management problems. ∗Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign. Email: [email protected] †NUS Business School, National University of Singapore and Singapore-MIT-Alliance (SMA). Email: [email protected]. The research of the author is supported by SMA and NUS academic research grants R-314-000-066-122 and R-314-000-068-112 ‡Fuqua School of Business, Duke University Box 90120, Durham, NC 27708, USA. Email: [email protected] §Stern School of Business, New York University, New York, NY, 10012. Email: [email protected]
منابع مشابه
A Combined Stochastic Programming and Robust Optimization Approach for Location-Routing Problem and Solving it via Variable Neighborhood Search algorithm
The location-routing problem is one of the combined problems in the area of supply chain management that simultaneously make decisions related to location of depots and routing of the vehicles. In this paper, the single-depot capacitated location-routing problem under uncertainty is presented. The problem aims to find the optimal location of a single depot and the routing of vehicles to serve th...
متن کاملA Robust Optimization Perspective on Stochastic Programming
In this paper, we introduce an approach for constructing uncertainty sets for robust optimization using new deviation measures for random variables termed the forward and backward deviations. These deviation measures capture distributional asymmetry and lead to better approximations of chance constraints. Using a linear decision rule, we also propose a tractable approximation approach for solvi...
متن کاملPrimal and dual linear decision rules in stochastic and robust optimization
Linear stochastic programming provides a flexible toolbox for analyzing reallife decision situations, but it can become computationally cumbersome when recourse decisions are involved. The latter are usually modeled as decision rules, i.e., functions of the uncertain problem data. It has recently been argued that stochastic programs can quite generally be made tractable by restricting the space...
متن کاملDemand-oriented timetable design for urban rail transit under stochastic demand
In the context of public transportation system, improving the service quality and robustness through minimizing the average passengers waiting time is a real challenge. This study provides robust stochastic programming models for train timetabling problem in urban rail transit systems. The objective is minimization of the weighted summation of the expected cost of passenger waiting time, its va...
متن کاملA Linear Decision-Based Approximation Approach to Stochastic Programming
Stochastic optimization, especially multistage models, is well known to be computationally excruciating. Moreover, such models require exact specifications of the probability distributions of the underlying uncertainties, which are often unavailable. In this paper, we propose tractable methods of addressing a general class of multistage stochastic optimization problems, which assume only limite...
متن کامل