The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies.
نویسندگان
چکیده
Understanding of brain functioning requires the investigation of activated cortical networks, in particular the detection of interactions between different cortical sites. Commonly, coherence and correlation are used to describe interrelations between EEG signals. However, on this basis, no statements on causality or the direction of their interrelations are possible. Causality between two signals may be expressed in terms of upgrading the predictability of one signal by the knowledge of the immediate past of the other signal. The best-established approach in this context is the so-called Granger causality. The classical estimation of Granger causality requires the stationarity of the signals. In this way, transient pathways of information transfer stay hidden. The study presents an adaptive estimation of Granger causality. Simulations demonstrate the usefulness of the time-variant Granger causality for detecting dynamic causal relations within time intervals of less than 100 ms. The time-variant Granger causality is applied to EEG data from the Stroop task. It was shown that conflict situations generate dense webs of interactions directed from posterior to anterior cortical sites. The web of directed interactions occurs mainly 400 ms after the stimulus onset and lasts up to the end of the task.
منابع مشابه
Measures of Coupling between Neural Populations Based on Granger Causality Principle
This paper shortly reviews the measures used to estimate neural synchronization in experimental settings. Our focus is on multivariate measures of dependence based on the Granger causality (G-causality) principle, their applications and performance in respect of robustness to noise, volume conduction, common driving, and presence of a "weak node." Application of G-causality measures to EEG, int...
متن کاملNeural networks with non-uniform embedding and explicit validation phase to assess Granger causality
A challenging problem when studying a dynamical system is to find the interdependencies among its individual components. Several algorithms have been proposed to detect directed dynamical influences between time series. Two of the most used approaches are a model-free one (transfer entropy) and a model-based one (Granger causality). Several pitfalls are related to the presence or absence of ass...
متن کاملQuantification of Effective Connectivity in the Brain Using a Measure of Directed Information
Effective connectivity refers to the influence one neural system exerts on another and corresponds to the parameter of a model that tries to explain the observed dependencies. In this sense, effective connectivity corresponds to the intuitive notion of coupling or directed causal influence. Traditional measures to quantify the effective connectivity include model-based methods, such as dynamic ...
متن کاملCausal Nexus between Inflation and Economic Growth of Japan
This study aims to evaluate the link between economic growth and consumer price index (CPI) in Japan for the period of 1980-2014. Initial series were adjusted for stationarity using the Augmented Dickey- Fuller (ADF) test for unit root followed by the application of Johansen Co-integration Test in order to examine the long-run relationship among the variables, while the causalities were evaluat...
متن کاملMultivariate Autoregressive Modeling and Granger Causality Analysis of Multiple Spike Trains
Recent years have seen the emergence of microelectrode arrays and optical methods allowing simultaneous recording of spiking activity from populations of neurons in various parts of the nervous system. The analysis of multiple neural spike train data could benefit significantly from existing methods for multivariate time-series analysis which have proven to be very powerful in the modeling and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neuroscience methods
دوره 124 1 شماره
صفحات -
تاریخ انتشار 2003