Dynamics of biologically active subpopulations of influenza virus: plaque-forming, noninfectious cell-killing, and defective interfering particles.

نویسندگان

  • Philip I Marcus
  • John M Ngunjiri
  • Margaret J Sekellick
چکیده

The dynamic changes in the temporal appearance and quantity of a new class of influenza virus, noninfectious cell-killing particles (niCKP), were compared to defective interfering particles (DIP). After a single high-multiplicity passage in MDCK cells of an egg-derived stock that lacked detectable niCKP or DIP, both classes of particles appeared in large numbers (>5 x 10(8)/ml), and the plaque-forming particle (PFP) titer dropped approximately 60-fold. After two additional serial high-multiplicity passages the DIP remained relatively constant, the DIP/niCKP ratio reached 10:1, and the PFP had declined by about 10,000-fold. Together, the niCKP and DIP subpopulations constituted ca. 20% of the total hemagglutinating particle population in which these noninfectious biologically active particles (niBAP) were subsumed. DIP neither killed cells nor interfered with the cell-killing (apoptosis-inducing) activity of niCKP or PFP (infectious CKP), even though they blocked the replication of PFP. Relative to the UV-target of approximately 13,600 nucleotides (nt) for inactivation of PFP, the UV target for niCKP was approximately 2,400 nt, consistent with one of the polymerase subunit genes, and that for DIP was approximately 350 nt, consistent with the small DI-RNA responsible for DIP-mediated interference. Thus, niCKP and DIP are viewed as distinct particles with a propensity to form during infection at high multiplicities. These conditions are postulated to cause aberrations in the temporally regulated replication of virus and its packaging, leading to the production of niBAP. DIP have been implicated in the virulence of influenza virus, but the role of niCKP is yet unknown.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Defective interfering virus associated with A/Chicken/Pennsylvania/83 influenza virus.

The A/Chicken/Pennsylvania/1/83 influenza virus, isolated from a respiratory infection of chickens, is an avirulent H5N2 virus containing subgenomic RNAs (W.J. Bean, Y. Kawaoka, J.M. Wood, J.E. Pearson, and R.G. Webster, J. Virol. 54:151-160, 1985). We show here that defective interfering particles are present in this virus population. The virus had a low ratio of plaque-forming to hemagglutina...

متن کامل

Homologous interference of lymphocytic choriomeningitis virus: detection and measurement of interference focus-forming units.

Lymphocytic choriomeninigitis (LCM) virus defective interfering (DI) particles form foci of protected cells in a monolayer under an agarose-containing overlay medium. Foci originate from one cell dually infected with at least 1 interference focus-forming unit and infectious virus. As a result, an interfering factor is produced and released which interacts with neighboring cells, thereby protect...

متن کامل

Sequence analysis of in vivo defective interfering-like RNA of influenza A H1N1 pandemic virus.

Influenza virus defective interfering (DI) particles are naturally occurring noninfectious virions typically generated during in vitro serial passages in cell culture of the virus at a high multiplicity of infection. DI particles are recognized for the role they play in inhibiting viral replication and for the impact they have on the production of infectious virions. To date, influenza virus DI...

متن کامل

Mediators of protection against lethal systemic vesicular stomatitis virus infection in hamsters: defective interfering particles, polyinosinate-polycytidylate, and interferon.

Homologous defective interfering (DI) particles protected adult Syrian hamsters against lethal systemic infection with vesicular stomatitis virus (VSV) serotype Indiana. The DI particles had to be biologically active, but did not have to be administered at the same inoculation site as the infectious virus. Serum and tissue levels of VSV postinoculation were significantly lower in DI-protected a...

متن کامل

Interfering With Lipid Raft Association: A Mechanism to Control Influenza Virus Infection By Sambucus Nigra

Sambucus nigra (elder) are broadly used species to treat microbial infections. Thepotential antiviral activity and mechanism action of elder fruit (EF) in human epithelium cell(A549) cultures infected with H9N2 influenza virus were determined. The effect of variousconcentrations of EF on influenza virus replication was examined by using virus titration,quantitative real time RT-PCR, fusion and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 83 16  شماره 

صفحات  -

تاریخ انتشار 2009