Effect of hypertransfusion on bone marrow regeneration in sublethally irradiated mice. II. Enhanced recovery of megakaryocytes and platelets.
نویسندگان
چکیده
Hypertransfusion can enhance myeloid recovery after bone marrow depletion, but its influence on thrombopoietic recovery has not been previously defined. We have studied the pattern of platelet and megakaryocyte recovery in mice hypertransfused after receiving 350 rad whole body irradiation. The platelet counts of the hypertransfused group showing an initial fall due to hemodilution in the expanded blood volume and then fell to a lower nadir than that of the control mice. The rate of platelet recovery was more rapid in the hypertransfused mice. Bone marrow megakaryocyte concentrations in both groups showed a degenerative phase, abortive rise, and regenerative phase. The decrease in megakaryocytes was the same in both groups. The hypertransfused mice showed a greater abortive rise in megakaryocyte concentration preceded by the appearance of a greater number of large megakaryocytes in the bone marrow. However, the most striking effect of hypertransfusion was on megakaryocyte recovery. Although the time of onset of recovery was not different, the rate of recovery was approximately twice as rapid in the hypertransfused group. Administration of daily erythropoietin to hypertransfused mice abolished this more rapid recovery. Thus, the presence of a simultaneous demand for erythroid precursors does affect the rate of megakaryocyte regeneration. Just as the more rapid recovery of granulopoiesis following hypertransfusion may be clinically beneficial, the more rapid reconstitution of thrombopoiesis may also offer clinical advantage in some circcumstances.
منابع مشابه
Effect of hypertransfusion on bone marrow regeneration in sublethally irradiated mice. I. enhanced granulopoietic recovery.
Hypertransfusion can enhance recovery from neutropenia in certain clinical and experimental situations. We have studied the pattern of myeloid recovery in mice hypertransfused after receiving 350 rads whole body irradiation. Both hypertransfused and control groups showed the degenerative phase, abortive rise, and regenerative phase that has been described following sublethal irradiation. The bl...
متن کاملThrombocytotic suppression of megakaryocyte production from stem cells.
Megakaryocytopoiesis in the spleens of lethally irradiated mice transplanted with marrow cells was suppressed by platelet transfusions. In one group of experiments, animals were irradiated and transfused with bone marrow cells on day O. They were then given either no treatment, platelets, platelet-poor plasma, or saline on days 0, 2, 4, 6, and 8, and then were sacrificed on day 10. Megakaryocyt...
متن کاملEnhanced antibody affinity in sublethally irradiated mice and bone marrow chimeras.
Sublethally irradiated mice primed with dinitrophenyl (Dnp)-keyhole limpet hemocyanin immediately after irradiation or 30 days later and subsequently boosted with a second injection of antigen displayed a secondary response to Dnp characterized by antibody affinity greater than that in unirradiated controls. Also, in radiation chimeras primed with Dnp-keyhole limpet hemocyanin 120 days after sy...
متن کاملThrombocytopoiesis in normal and sublethally irradiated dogs: response to human interleukin-6.
The response of megakaryocytes and platelets to the administration of recombinant human interleukin-6 (IL-6) was investigated in normal and sublethally irradiated dogs. IL-6 was administered for 2 weeks at doses of 10 to 160 micrograms/kg/d to normal animals to assess dose-response and toxicity. Subsequently, 40, 80, or 160 micrograms/kg/d for 2 weeks was administered to animals treated with 20...
متن کاملXenotransplantation of immunodeficient mice with mobilized human blood CD34+ cells provides an in vivo model for human megakaryocytopoiesis and platelet production.
The study of megakaryocytopoiesis has been based largely on in vitro assays. We characterize an in vivo model of megakaryocyte and platelet development in which human peripheral blood stem cells (PBSCs) differentiate along megakaryocytic as well as myeloid/lymphoid lineages in sublethally irradiated nonobese diabetic/severe combined immunodeficient (NOD-SCID) mice. Human hematopoiesis preferent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 56 1 شماره
صفحات -
تاریخ انتشار 1980