Type-B ARABIDOPSIS RESPONSE REGULATORs Specify the Shoot Stem Cell Niche by Dual Regulation of WUSCHEL.

نویسندگان

  • Wen Jing Meng
  • Zhi Juan Cheng
  • Ya Lin Sang
  • Miao Miao Zhang
  • Xiao Fei Rong
  • Zhi Wei Wang
  • Ying Ying Tang
  • Xian Sheng Zhang
چکیده

Plants are known for their capacity to regenerate the whole body through de novo formation of apical meristems from a mass of proliferating cells named callus. Exogenous cytokinin and auxin determine cell fate for the establishment of the stem cell niche, which is the vital step of shoot regeneration, but the underlying mechanisms remain unclear. Here, we show that type-B ARABIDOPSIS RESPONSE REGULATORs (ARRs), critical components of cytokinin signaling, activate the transcription of WUSCHEL (WUS), which encodes a key regulator for maintaining stem cells. In parallel, type-B ARRs inhibit auxin accumulation by repressing the expression of YUCCAs, which encode a key enzyme for auxin biosynthesis, indirectly promoting WUS induction. Both pathways are essential for de novo regeneration of the shoot stem cell niche. In addition, the dual regulation of type-B ARRs on WUS transcription is required for the maintenance of the shoot apical meristem in planta. Thus, our results reveal a long-standing missing link between cytokinin signaling and WUS regulator, and the findings provide critical information for understanding cell fate specification.

منابع مشابه

Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem.

A central unanswered question in stem cell biology, both in plants and in animals, is how the spatial organization of stem cell niches are maintained as cells move through them. We address this question for the shoot apical meristem (SAM) which harbors pluripotent stem cells responsible for growth of above-ground tissues in flowering plants. We find that localized perception of the plant hormon...

متن کامل

Regulation of WUSCHEL Transcription in the Stem Cell Niche of the Arabidopsis Shoot Meristem W

Pluripotent stem cells are localized in specialized microenvironments, called stem cell niches, where signals from surrounding cells maintain their undifferentiated status. In the Arabidopsis thaliana shoot meristem, the homeobox gene WUSCHEL (WUS) is expressed in the organizing center underneath the stem cells and integrates regulatory information from several pathways to define the boundaries...

متن کامل

Sirtinol, a Sir2 protein inhibitor, affects stem cell maintenance and root development in Arabidopsis thaliana by modulating auxin-cytokinin signaling components

In Arabidopsis thaliana, besides several key transcription factors and chromatin modifiers, phytohormones auxin and cytokinin play pivotal role in shoot and root meristem maintenance, and lateral root (LR) development. Sirtinol, a chemical inhibitor of Sir2 proteins, is known to promote some auxin induced phenotypes in Arabidopsis. However, its effect on plant stem cell maintenance or organ for...

متن کامل

Regulation of WUSCHEL transcription in the stem cell niche of the Arabidopsis shoot meristem.

Pluripotent stem cells are localized in specialized microenvironments, called stem cell niches, where signals from surrounding cells maintain their undifferentiated status. In the Arabidopsis thaliana shoot meristem, the homeobox gene WUSCHEL (WUS) is expressed in the organizing center underneath the stem cells and integrates regulatory information from several pathways to define the boundaries...

متن کامل

Stem cell homeostasis in the Arabidopsis shoot meristem is regulated by intercellular movement of CLAVATA3 and its sequestration by CLAVATA1.

Stem cell maintenance in the Arabidopsis shoot meristem is regulated by communication between the apical stem cells and the underlying organizing centre. Expression of the homeobox gene WUSCHEL in the organizing centre induces stem cell identity in the overlying neighbours, which then express the CLAVATA3 gene whose activity in turn restricts the size of the WUSCHEL expression domain. We have a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • The Plant cell

دوره 29 6  شماره 

صفحات  -

تاریخ انتشار 2017