Interfacial Bonding Energy on the Interface between ZChSnSb/Sn Alloy Layer and Steel Body at Microscale
نویسندگان
چکیده
To investigate the performance of bonding on the interface between ZChSnSb/Sn and steel body, the interfacial bonding energy on the interface of a ZChSnSb/Sn alloy layer and the steel body with or without Sn as an intermediate layer was calculated under the same loadcase using the molecular dynamics simulation software Materials Studio by ACCELRYS, and the interfacial bonding energy under different Babbitt thicknesses was compared. The results show that the bonding energy of the interface with Sn as an intermediate layer is 10% larger than that of the interface without a Sn layer. The interfacial bonding performances of Babbitt and the steel body with Sn as an intermediate layer are better than those of an interface without a Sn layer. When the thickness of the Babbitt layer of bushing is 17.143 Å, the interfacial bonding energy reaches the maximum, and the interfacial bonding performance is optimum. These findings illustrate the bonding mechanism of the interfacial structure from the molecular level so as to ensure the good bonding properties of the interface, which provides a reference for the improvement of the bush manufacturing process from the microscopic point of view.
منابع مشابه
Effect of diffusion bonding temperature on microstructure properties of Zr/Ti interlayer in the diffusion bonded joints of Zr702 to A516 steel
In this study, the effect of temperature on the microstructure and reactive layer at the interface between the Ti interlayer and the base metal related to the diffusion bonding of Zr702 to A516 low alloy steel was investigated. The joining was done using the spark plasma sintering technique at temperatures of 900, 950 and 1000°C for 30 minutes. Field Emission Scanning Electron Microscope (FESEM...
متن کاملEffect of diffusion bonding temperature on microstructure properties of Zr/Ti interlayer in the diffusion bonded joints of Zr702 to A516 steel
In this study, the effect of temperature on the microstructure and reactive layer at the interface between the Ti interlayer and the base metal related to the diffusion bonding of Zr702 to A516 low alloy steel was investigated. The joining was done using the spark plasma sintering technique at temperatures of 900, 950 and 1000°C for 30 minutes. Field Emission Scanning Electron Microscope (FESEM...
متن کاملStudy of Reactive Wetting of Sn–0.7Cu and Sn–0.3Ag–0.7Cu Lead Free Solders during Solidification on Nickel Coated Al Substrates
Microstructure, wetting behavior and interfacial reactions between Sn–0.7Cu and Sn–0.3Ag–0.7Cu (SAC0307) solders solidified on Ni coated Al substrates were compared and investigated. Microstructure of Sn–0.7Cu alloy exhibited a eutectic matrix composed of primary β-Sn dendrites with a fine dispersion of Cu6Sn5 intermetallics whereas microstructure of SAC0307 alloy exhibited coarser Cu6Sn5 and f...
متن کاملPunch plastic deformation pipe cladding (PPDPC) as a novel tube cladding method
This study presents a new mechanical tube cladding process named punch plastic deformation pipe cladding (PPDPC) based on local deformation by pressing a punch into the inner layer of the bimetal tube. To investigate the capability of the process, stainless steel tube (as the inner layer) is bonded to a carbon steel pipe (as the outer layer) to fabricate a bimetal pipe. Shear punch tests were u...
متن کاملEVALUATION OF PRESSURE EFFECT ON HEAT TRANSFER COEFFICIENT AT THE METAL- MOLD INTERFACE FOR CASTING OF A356 AL ALLOY
Abstract: During solidification and casting in metallic molds, the heat flow is controlled by the thermal resistance at the casting-mold interface. Thus heat transfer coefficient at the metal- mold interface has a predominant effect on the rate of heat transfer. In some processes such as low pressure and die-casting, the effect of pressure on molten metal will affect the rate of heat transfer a...
متن کامل