Pulmonary eosinophils and their role in immunopathologic responses to formalin-inactivated pneumonia virus of mice.
نویسندگان
چکیده
Enhanced disease is the term used to describe the aberrant Th2-skewed responses to naturally acquired human respiratory syncytial virus (hRSV) infection observed in individuals vaccinated with formalin-inactivated viral Ags. Here we explore this paradigm with pneumonia virus of mice (PVM), a pathogen that faithfully reproduces features of severe hRSV infection in a rodent host. We demonstrate that PVM infection in mice vaccinated with formalin-inactivated Ags from PVM-infected cells (PVM Ags) yields Th2-skewed hypersensitivity, analogous to that observed in response to hRSV. Specifically, we detect elevated levels of IL-4, IL-5, IL-13, and eosinophils in bronchoalveolar lavage fluid of PVM-infected mice that were vaccinated with PVM Ags, but not among mice vaccinated with formalin-inactivated Ags from uninfected cells (control Ags). Interestingly, infection in PVM Ag-vaccinated mice was associated with a approximately 10-fold reduction in lung virus titer and protection against weight loss when compared with infected mice vaccinated with control Ags, despite the absence of serum-neutralizing Abs. Given recent findings documenting a role for eosinophils in promoting clearance of hRSV in vivo, we explored the role of eosinophils in altering the pathogenesis of disease with eosinophil-deficient mice. We found that eosinophil deficiency had no impact on virus titer in PVM Ag-vaccinated mice, nor on weight loss or levels of CCL11 (eotaxin-1), IFN-gamma, IL-5, or IL-13 in bronchoalveolar lavage fluid. However, levels of both IL-4 and CCL3 (macrophage inflammatory protein-1alpha) in bronchoalveolar lavage fluid were markedly diminished in PVM Ag-vaccinated, PVM-infected eosinophil-deficient mice when compared with wild-type controls.
منابع مشابه
IL-13 is required for eosinophil entry into the lung during respiratory syncytial virus vaccine-enhanced disease.
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract disease in children. Children previously vaccinated with a formalin-inactivated RSV vaccine experienced enhanced morbidity and mortality upon natural RSV infection. Histological analysis revealed the presence of eosinophils in the pulmonary infiltrate of the vaccinated children. Eosinophils are characteristic of T...
متن کاملEvaluation of the Effect of Silver Nanoparticles on Induction of Neutraliz-ing Antibodies against Inactivated Rabies Virus
Background: Nanoparticles have been considered as promising tools because of their high applicability. Recently, nanoparticles have been evaluated for their ability to increase the immune responses as adjuvants. Silver-nanoparticles (AgNPs) have shown promising results in enhancing Th-2 immune responses and to produce potent neutralizing antibodies. Neutralizing antibodies are considered as t...
متن کاملRespiratory syncytial virus-like nanoparticle vaccination induces long-term protection without pulmonary disease by modulating cytokines and T-cells partially through alveolar macrophages
The mechanisms of protection against respiratory syncytial virus (RSV) are poorly understood. Virus-like nanoparticles expressing RSV glycoproteins (eg, a combination of fusion and glycoprotein virus-like nanoparticles [FG VLPs]) have been suggested to be a promising RSV vaccine candidate. To understand the roles of alveolar macrophages (AMs) in inducing long-term protection, mice that were 12 ...
متن کاملEffect of IL-2 co-expressed or co-inoculated with immuno-dominant epitopes from VP1 protein of FMD virus on immune responses in BALB/c mice
Objective(s): The results of studies on vaccine development for foot-and-mouth disease (FMD) virus show that the use of inactivated vaccines for FMD virus is not completely effective. Novel vaccinations based on immuno-dominant epitopes have been shown to induce immune responses. Furthermore, for safety of immunization, access to efficient adjuvants against FMD virus seems to be critical.Materi...
متن کاملVbeta14(+) T cells mediate the vaccine-enhanced disease induced by immunization with respiratory syncytial virus (RSV) G glycoprotein but not with formalin-inactivated RSV.
Mice immunized with respiratory syncytial virus (RSV) G glycoprotein or with formalin-inactivated RSV (FI-RSV) exhibit severe disease following RSV challenge. This results in type 2 cytokine production and pulmonary eosinophilia, both hallmarks of vaccine-enhanced disease. RSV G-induced T-cell responses were shown to be restricted to CD4(+) T cells expressing Vbeta14 in the T-cell receptor (TCR...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 183 1 شماره
صفحات -
تاریخ انتشار 2009