Marginal likelihood estimation via power posteriors

نویسندگان

  • N. Friel
  • A. N. Pettitt
چکیده

Model choice plays an increasingly important role in Statistics. From a Bayesian perspective a crucial goal is to compute the marginal likelihood of the data for a given model. This however is typically a difficult task since it amounts to integrating over all model parameters. The aim of this paper is to illustrate how this may be achieved using ideas from thermodynamic integration or path sampling. We show how the marginal likelihood can be computed via MCMC methods on modified posterior distributions for each model. This then allows Bayes factors or posterior model probabilities to be calculated. We show that this approach requires very little tuning, and is straightforward to implement. The new method is illustrated in a variety of challenging statistical settings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of marginal likelihoods via the density of states

Bayesian model comparison involves the evaluation of the marginal likelihood, the expectation of the likelihood under the prior distribution. Typically, this high-dimensional integral over all model parameters is approximated using Markov chain Monte Carlo methods. Thermodynamic integration is a popular method to estimate the marginal likelihood by using samples from annealed posteriors. Here w...

متن کامل

Marginal set likelihood for semiparametric copula estimation

Quantitative studies in many fields involve the analysis of multivariate data of diverse types, including measurements that we may consider binary, ordinal and continuous. One approach to the analysis of such mixed data is to use a copula model, in which the associations among the variables are parameterized separately from their univariate marginal distributions. The purpose of this article is...

متن کامل

Fast cosmological parameter estimation using neural networks

We present a method for accelerating the calculation of CMB power spectra, matter power spectra and likelihood functions for use in cosmological parameter estimation. The algorithm, called COSMONET, is based on training a multilayer perceptron neural network and shares all the advantages of the recently released PICO algorithm of Fendt & Wandelt, but has several additional benefits in terms of ...

متن کامل

Extending the rank likelihood for semiparametric copula estimation

Quantitative studies in many fields involve the analysis of multivariate data of diverse types, including measurements that we may consider binary, ordinal and continuous. One approach to the analysis of such mixed data is to use a copula model, in which the associations among the variables are parameterized separately from their univariate marginal distributions. The purpose of this article is...

متن کامل

Monte Carlo State-Space Likelihoods by Weighted Posterior Kernel Density Estimation

Maximum likelihood estimation and likelihood ratio tests for nonlinear, non-Gaussian state-space models require numerical integration for likelihood calculations. Several methods, including Monte Carlo (MC) expectation maximization, MC likelihood ratios, direct MC integration, and particle Ž lter likelihoods, are inefŽ cient for the motivating problem of stage-structured population dynamics mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005