The Cerny conjecture and (n-1)-Hamiltonian automata

نویسنده

  • Henk Don
چکیده

A deterministic finite automaton is synchronizing if there exists a word that sends all states of the automaton to the same state. Černý conjectured in 1964 that a synchronizing automaton with n states has a synchronizing word of length at most (n− 1). We introduce the notion of aperiodically 1−contracting automata and prove that in these automata all subsets of the state set are reachable, so that in particular they are synchronizing. Furthermore, we give a sufficient condition under which the Černý conjecture holds for aperiodically 1−contracting automata. As a special case, we prove some results for circular automata.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Cerny Conjecture for Automata with Blocking States

In [7], Jan Černý conjectured that an arbitrary directable automaton with n states has a directing word of length not longer than (n−1). This conjecture is one of the most longstanding open problems in the theory of finite automata. Most of papers dealing with this conjecture reduce the problem to special classes of automata. In present paper we deal with this conjecture in the class of automat...

متن کامل

Černý conjecture for edge-colored digraphs with few junctions

In this paper we consider the Cerny conjecture in terminology of colored digraphs corresponding to finite automata. We define a class of colored digraphs having a relatively small number of junctions between paths determined by different colors, and prove that digraphs in this class satisfy the Cerny conjecture. We argue that this yields not only a new class of automata for which the Cerny conj...

متن کامل

The Synchronization Problem for Strongly Transitive Automata

The synchronization problem for a deterministic n-state automaton consists in the search of an input-sequence, called a synchronizing word such that the state attained by the automaton, when this sequence is read, does not depend on the initial state of the automaton itself. If such a sequence exists, the automaton is called synchronizing. If the automaton is deterministic and complete, a well-...

متن کامل

Cerny Conjecture for Dfa Accepting Star-free Languages

A word w is called synchronizing (recurrent, reset) word of an automaton if w sends all states of the automaton on a unique state. Cerny had conjectured in 1964 that an n-state automaton with non-empty set of synchronizing words possesses a synchronizing word of length not greater than (n 1)2. We consider automata accepting star-free languages (or aperiodic, viz all subgroups of the syntactic m...

متن کامل

The Cerny conjecture for automata respecting intervals of a directed graph

Thě Cern´y's conjecture states that for every synchronizing automaton with n states there exists a reset word of length not exceeding (n−1) 2. We prove this conjecture for a class of automata preserving certain properties of intervals of a directed graph. Our result unifies and generalizes some earlier results obtained by other authors. In this paper we consider finite (deterministic complete) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1507.06070  شماره 

صفحات  -

تاریخ انتشار 2015