Cryptographic properties of Boolean functions defining elementary cellular automata
نویسندگان
چکیده
Department of Informatic and Automatic, E.P.S. de Zamora, Universidad de Salamanca. Avda. Cardenal Requejo 34, 49022-Zamora, Spain; Department of Applied Mathematics, E.P.S. de Ávila, Universidad de Salamanca. C/ Hornos Caleros 50,05003-Ávila, Spain; Department of Applied Mathematics, E.P.S. de Zamora, Universidad de Salamanca. Avda. Cardenal Requejo 34, 49022-Zamora, Spain; Department of Applied Mathematics, E.T.S.S.I. de Béjar, Universidad de Salamanca. Avda. Fernández Ballesteros 2, 37700-Béjar, Salamanca, Spain; Department of Applied Mathematics and Computation, E.T.S.I. (ICAI), Universidad Pontifica de Comillas. C/ Alberto Aguilera 23, 28015-Madrid, Spain
منابع مشابه
The Cryptographic Properties of Von Neumann Cellular Automata
In this paper it is shown that two-dimensional cellular automata with Von Neumann neighborhoods are not suitable for cryptographic purposes. This result is obtained after analyzing the most important cryptographic properties of boolean functions defining their local transition rules 2000 Mathematics Subject Classifications: 68Q80, 94A60, 94C10
متن کاملA Note on Minimal Boolean Formula Size of One-Dimensional Cellular Automata
In [4] Wolfram asserts to have found minimal Boolean formulas for (what he denotes) rules of one-dimensional, two-state, nearest neighbor cellular automata (CA) or simply elementary rules. These formulas are minimal in the sense that they “use the minimum possible number of operators” over basis Ω1 = {0,1,¬,∧,∨,⊕}. Provided that elementary rules can be interpreted as 3-input Boolean functions a...
متن کاملElementary cellular automata as conditional Boolean formulæ
I show that any elementary cellular automata – a class of 1-dimensional, 2-state cellular automata – can be deconstructed into a set of two Boolean operators; I also present a conjecture concerning the computational completeness of a rule and its relationship to complete Boolean operators.
متن کاملGenerating cryptographically strong Boolean functions using partial information
Boolean functions play an important role in cryptography. They are elementary building blocks for various cryptographic algorithms – stream ciphers, block ciphers, hash functions, etc. The most common usage for Boolean functions is the construction of larger blocks – substitution boxes [4, 5, 6]. Boolean functions used in these constructions ought to satisfy certain criteria in order to resist ...
متن کاملNetwork Structure and Activity in Boolean Networks
In this paper we extend the notion of activity for Boolean Networks introduced by Shmulevich and Kauffman (2004). Unlike the existing notion, we take into account the actual graph structure of the Boolean Network. As illustrations, we determine the activity of all elementary cellular automata, and d-regular trees and square lattices where the vertex functions are bi-thresholdand logical nor fun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Comput. Math.
دوره 88 شماره
صفحات -
تاریخ انتشار 2011