Kruppel-like factor 4 contributes to high phosphate-induced phenotypic switching of vascular smooth muscle cells into osteogenic cells.
نویسندگان
چکیده
Hyperphosphatemia in chronic kidney disease is highly associated with vascular calcification. Previous studies have shown that high phosphate-induced phenotypic switching of vascular smooth muscle cells (SMCs) into osteogenic cells plays an important role in the calcification process. In the present study, we determined whether Krüppel-like factor 4 (Klf4) and phosphorylated Elk-1, transcriptional repressors of SMC differentiation marker genes activated by intimal atherogenic stimuli, contributed to this process. Rat aortic SMCs were cultured in the medium with normal (0.9 mmol/liter) or high (4.5 mmol/liter) phosphate concentration. Results showed that high phosphate concentration induced SMC calcification. Moreover, high phosphate decreased expression of SMC differentiation marker genes including smooth muscle α-actin and SM22α, whereas it increased expression of osteogenic genes, such as Runx2 and osteopontin. High phosphate also induced Klf4 expression, although it did not phosphorylate Elk-1. In response to high phosphate, Klf4 selectively bound to the promoter regions of SMC differentiation marker genes. Of importance, siRNA-mediated knockdown of Klf4 blunted high phosphate-induced suppression of SMC differentiation marker genes, as well as increases in expression of osteogenic genes and calcium deposition. Klf4 was also induced markedly in the calcified aorta of adenine-induced uremic rats. Results provide novel evidence that Klf4 mediates high phosphate-induced conversion of SMCs into osteogenic cells.
منابع مشابه
Smooth Muscle–Selective Nuclear Factor‐κB Inhibition Reduces Phosphate‐Induced Arterial Medial Calcification in Mice With Chronic Kidney Disease
BACKGROUND Hyperphosphatemia is a major factor promoting the formation of arterial medial calcification in chronic kidney disease (CKD). However, arterial medial calcification begins to occur during the early stages of CKD, when hyperphosphatemia is not yet apparent. It is predicted that other factors also play a role. The aim of the present study was to determine the role of pro-inflammatory n...
متن کاملEffect of Oxidized Low Density Lipoprotein on the Expression of Runx2 and SPARC Genes in Vascular Smooth Muscle Cells
Background: Vascular calcification is an important stage in atherosclerosis. During this stage, vascular smooth muscle cells (VSMC) synthesize many osteogenic factors such as osteonectin (encoded by SPARC). Oxidative stress plays a critical role in atherosclerosis progression, and its accumulation in the vascular wall stimulates the development of atherosclerosis and vascular calcification. The...
متن کاملVascular calcification is coupled with phenotypic conversion of vascular smooth muscle cells through Klf5-mediated transactivation of the Runx2 promoter
Both Klf5 (Krüppel-like factor 5) and Runx2 are involved in phenotypic switching of VSMC (vascular smooth muscle cells). However, the potential link between Klf5 and Runx2 in mediating vascular calcification remains unclear. The aim of the present study was to elucidate the actual relationship between Klf5 and Runx2 in mediating VSMC calcification. We found that high Pi (phosphate) increased th...
متن کاملCorrection: TGF-β Prevents Phosphate-Induced Osteogenesis through Inhibition of BMP and Wnt/β-Catenin Pathways
BACKGROUND Transforming growth factor-β (TGF-β) is a key cytokine during differentiation of mesenchymal stem cells (MSC) into vascular smooth muscle cells (VSMC). High phosphate induces a phenotypic transformation of vascular smooth muscle cells (VSMC) into osteogenic-like cells. This study was aimed to evaluate signaling pathways involved during VSMC differentiation of MSC in presence or not o...
متن کاملAngiogenic Factor With G Patch and FHA Domains 1 Is a Novel Regulator of Vascular Injury.
OBJECTIVE Phenotypic modulation of vascular smooth muscle cells represents a hallmark event in vascular injury. The underlying mechanism is not completely sorted out. We investigated the involvement of angiogenic factor with G patch and FHA domains 1 (Aggf1) in vascular injury focusing on the transcriptional regulation of vascular smooth muscle cell signature genes. APPROACH AND RESULTS We re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 287 31 شماره
صفحات -
تاریخ انتشار 2012