Layer-specific generation and propagation of seizures in slices of developing neocortex: role of excitatory GABAergic synapses.
نویسندگان
چکیده
The neonatal period is critical for seizure susceptibility, and neocortical networks are central in infantile epilepsies. We report that application of 4-aminopyridine (4-AP) to immature (P6-P9) neocortical slices generates layer-specific interictal seizures (IISs) that transform after recurrent seizures to ictal seizures (ISs). During IISs, cell-attached recordings show action potentials in interneurons and pyramidal cells in L5/6 and interneurons but not pyramidal neurons in L2/3. However, L2/3 pyramidal neurons also fire during ISs. Using single N-methyl-d-aspartate (NMDA) channel recordings for measuring the cell resting potential (Em), we show that transition from IISs to ISs is associated with a gradual Em depolarization of L2/3 and L5/6 pyramidal neurons that enhances their excitability. Bumetanide, a NKCC1 co-transporter antagonist, inhibits generation of IISs and prevents their transformation to ISs, indicating the role excitatory GABA in epilepsies. Therefore deep layer neurons are more susceptible to seizures than superficial ones. The initiating phase of seizures is characterized by IISs generated in L5/6 and supported by activation of both L5/6 interneurons and pyramidal cells. IISs propagate to L2/3 via activation of L2/3 interneurons but not pyramidal cells, which are mostly quiescent at this phase. In superficial layers, a persistent increase in excitability of pyramidal neurons caused by Em depolarization is associated with a transition from largely confined GABAergic IIS to ictal events that entrain the entire neocortex.
منابع مشابه
(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex
Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...
متن کاملEffects of visual deprivation on synaptic plasticity of visual cortex
TBS (Theta Burst Stimulation) and PBs (Primed Bursts) are among effective tetanic stimulations for induction of LTP in hippocampus. Recent studies have indicated that TBS is effective in LTP induction in layer III synapses of neocortex, only if applied to layer IV. However, the possibility of neocortical LTP induction using PBs, has not yet been investigated. Sensory deprivation greatly influ...
متن کاملD1-like dopamine receptor activation modulates GABAergic inhibition but not electrical coupling between neocortical fast-spiking interneurons.
Dopamine, acting through D(1) receptors, is thought to play an important role in cognitive functions of the frontal cortex such as working memory. D(1) receptors are widely expressed in fast-spiking (FS) interneurons, a prominent class of inhibitory cells that exert a powerful control of neuronal firing through proximal synapses on their postsynaptic targets. FS cells are extensively mutually i...
متن کاملExcitatory GABA in rodent developing neocortex in vitro.
GABA depolarizes immature cortical neurons. However, whether GABA excites immature neocortical neurons and drives network oscillations as in other brain structures remains controversial. Excitatory actions of GABA depend on three fundamental parameters: the resting membrane potential (Em), reversal potential of GABA (E(GABA)), and threshold of action potential generation (Vthr). We have shown r...
متن کاملElectrophysiological characteristics of hippocampal CA1 neurons after spreading depression-triggered epileptic activity in brain slices
Introduction: A close link between spreading depression (SD) and several neurological diseases such as epilepsy could be demonstrated in many experimental studies. Epilepsy is among the most common brain disorders. Despite a large number of investigations, its mechanisms have not been yet well elucidated. Hippocampus is one of the important structures involved in seizures. The aim of this st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 100 2 شماره
صفحات -
تاریخ انتشار 2008