Predicting Genetic Values: A Kernel-Based Best Linear Unbiased Prediction With Genomic Data

نویسندگان

  • Ulrike Ober
  • Malena Erbe
  • Nanye Long
  • Emilio Porcu
  • Martin Schlather
  • Henner Simianer
چکیده

Genomic data provide a valuable source of information for modeling covariance structures, allowing a more accurate prediction of total genetic values (GVs). We apply the kriging concept, originally developed in the geostatistical context for predictions in the low-dimensional space, to the high-dimensional space spanned by genomic single nucleotide polymorphism (SNP) vectors and study its properties in different gene-action scenarios. Two different kriging methods ["universal kriging" (UK) and "simple kriging" (SK)] are presented. As a novelty, we suggest use of the family of Matérn covariance functions to model the covariance structure of SNP vectors. A genomic best linear unbiased prediction (GBLUP) is applied as a reference method. The three approaches are compared in a whole-genome simulation study considering additive, additive-dominance, and epistatic gene-action models. Predictive performance is measured in terms of correlation between true and predicted GVs and average true GVs of the individuals ranked best by prediction. We show that UK outperforms GBLUP in the presence of dominance and epistatic effects. In a limiting case, it is shown that the genomic covariance structure proposed by VanRaden (2008) can be considered as a covariance function with corresponding quadratic variogram. We also prove theoretically that if a specific linear relationship exists between covariance matrices for two linear mixed models, the GVs resulting from BLUP are linked by a scaling factor. Finally, the relation of kriging to other models is discussed and further options for modeling the covariance structure, which might be more appropriate in the genomic context, are suggested.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing Different Marker Densities and Various Reference Populations Using Pedigree-Marker Best Linear Unbiased Prediction (BLUP) Model

In order to have successful application of genomic selection, reference population and marker density should be chosen properly. This study purpose was to investigate the accuracy of genomic estimated breeding values in terms of low (5K), intermediate (50K) and high (777K) densities in the simulated populations, when different scenarios were applied about the reference populations selecting. Af...

متن کامل

A Comparison of the Sensitivity of the BayesC and Genomic Best Linear Unbiased Prediction(GBLUP) Methods of Estimating Genomic Breeding Values under Different Quantitative Trait Locus(QTL) Model Assumptions

The objective of this study was to compare the accuracy of estimating and predicting breeding values using two diverse approaches, GBLUP and BayesC, using simulated data under different quantitative trait locus(QTL) effect distributions. Data were simulated with three different distributions for the QTL effect which were uniform, normal and gamma (1.66, 0.4). The number of QTL was assumed to be...

متن کامل

Genomic Prediction of Manganese Efficiency in Winter Barley.

Manganese efficiency is a quantitative abiotic stress trait controlled by several genes each with a small effect. Manganese deficiency leads to yield reduction in winter barley ( L.). Breeding new cultivars for this trait remains difficult because of the lack of visual symptoms and the polygenic features of the trait. Hence, Mn efficiency is a potential suitable trait for a genomic selection (G...

متن کامل

مقایسه روش های مختلف آماری در انتخاب ژنومی گاوهای هلشتاین

Genomic selection combines statistical methods with genomic data to predict genetic values for complex traits.  The accuracy of prediction of genetic values ​​in selected population has a great effect on the success of this selection method. Accuracy of genomic prediction is highly dependent on the statistical model used to estimate marker effects in reference population. Various factors such a...

متن کامل

Modeling Epistasis in Genomic Selection.

Modeling epistasis in genomic selection is impeded by a high computational load. The extended genomic best linear unbiased prediction (EG-BLUP) with an epistatic relationship matrix and the reproducing kernel Hilbert space regression (RKHS) are two attractive approaches that reduce the computational load. In this study, we proved the equivalence of EG-BLUP and genomic selection approaches, expl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 188  شماره 

صفحات  -

تاریخ انتشار 2011