Asymptotics of Weil-Petersson geodesics I: ending laminations, recurrence, and flows

نویسندگان

  • J. BROCK
  • H. MASUR
چکیده

We define an ending lamination for a Weil-Petersson geodesic ray. Despite the lack of a natural visual boundary for the Weil-Petersson metric [Br2], these ending laminations provide an effective boundary theory that encodes much of its asymptotic CAT(0) geometry. In particular, we prove an ending lamination theorem (Theorem 1.1) for the full-measure set of rays that recur to the thick part, and we show that the association of an ending lamination embeds asymptote classes of recurrent rays into the Gromov-boundary of the curve complex C (S). As an application, we establish fundamentals of the topological dynamics of the Weil-Petersson geodesic flow, showing density of closed orbits and topological transitivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

. G T ] 1 3 N ov 2 00 8 Asymptotics of Weil - Petersson geodesics I : ending laminations , recurrence , and flows

We define an ending lamination for a Weil-Petersson geodesic ray. Despite the lack of a natural visual boundary for the Weil-Petersson metric [Br2], these ending laminations provide an effective boundary theory that encodes much of its asymptotic CAT(0) geometry. In particular, we prove an ending lamination theorem (Theorem 1.1) for the full-measure set of rays that recur to the thick part, and...

متن کامل

Asymptotics of Weil-Petersson geodesics II: bounded geometry and unbounded entropy

We use ending laminations for Weil-Petersson geodesics to establish that bounded geometry is equivalent to bounded combinatorics for WeilPetersson geodesic segments, rays, and lines. Further, a more general notion of non-annular bounded combinatorics, which allows arbitrarily large Dehn-twisting, corresponds to an equivalent condition for Weil-Petersson geodesics. As an application, we show the...

متن کامل

Coarse and synthetic Weil-Petersson geometry: quasi-flats, geodesics, and relative hyperbolicity

We analyze the coarse geometry of the Weil-Petersson metric on Teichmüller space, focusing on applications to its synthetic geometry (in particular the behavior of geodesics). We settle the question of the strong relative hyperbolicity of the Weil-Petersson metric via consideration of its coarse quasi-isometric model, the pants graph. We show that in dimension 3 the pants graph is strongly rela...

متن کامل

The Ending Laminations Theorem direct from Teichmüller Geodesics

A proof of the Ending Laminations Theorem is given which uses Teichmüller geodesics directly.

متن کامل

The Geometric Model and Coarse Lipschitz Equivalence Direct from Teichmüller Geodesics

A proof of the Ending Laminations Theorem is given which uses Teichmüller geodesics directly, restricted, for simplicity to the case when the ending laminations data is a pair of minimal laminations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008