Iterative Learning from Positive Data and Negative Counterexamples
نویسندگان
چکیده
A model for learning in the limit is defined where a (so-called iterative) learner gets all positive examples from the target language, tests every new conjecture with a teacher (oracle) if it is a subset of the target language (and if it is not, then it receives a negative counterexample), and uses only limited long-term memory (incorporated in conjectures). Three variants of this model are compared: when a learner receives least negative counterexamples, the ones whose size is bounded by the maximum size of input seen so far, and arbitrary ones. A surprising result is that sometimes absence of bounded counterexamples can help an iterative learner whereas arbitrary counterexamples are useless. We also compare our learnability model with other relevant models of learnability in the limit, study how our model works for indexed classes of recursive languages, and show that learners in our model can work in non-U-shaped way — never abandoning the first right conjecture.
منابع مشابه
Learning Languages from Positive Data and Negative Counterexamples
In this paper we introduce a paradigm for learning in the limit of potentially infinite languages from all positive data and negative counterexamples provided in response to the conjectures made by the learner. Several variants of this paradigm are considered that reflect different conditions/constraints on the type and size of negative counterexamples and on the time for obtaining them. In par...
متن کاملLearning languages from positive data and a limited number of short counterexamples
We consider two variants of a model for learning languages in the limit from positive data and a limited number of short negative counterexamples (counterexamples are considered to be short if they are smaller than the largest element of input seen so far). Negative counterexamples to a conjecture are examples which belong to the conjectured language but do not belong to the input language. Wit...
متن کاملOn Learning Languages from Positive Data and a Limited Number of Short Counterexamples
We consider two variants of a model for learning languages in the limit from positive data and a limited number of short negative counterexamples (counterexamples are considered to be short if they are smaller that the largest element of input seen so far). Negative counterexamples to a conjecture are examples which belong to the conjectured language but do not belong to the input language. Wit...
متن کاملLearning Languages from Positive Data and a Finite Number of Queries
A computational model for learning languages in the limit from full positive data and a bounded number of queries to the teacher (oracle) is introduced and explored. Equivalence, superset, and subset queries are considered (for the latter one we consider also a variant when the learner tests every conjecture, but the number of negative answers is uniformly bounded). If the answer is negative, t...
متن کاملAutomatic Learning from Positive Data and Negative Counterexamples
We introduce and study a model for learning in the limit by finite automata from positive data and negative counterexamples. The focus is on learning classes of languages with a membership problem computable by finite automata (so-called automatic classes). We show that, within the framework of our model, finite automata (automatic learners) can learn all automatic classes when memory of a lear...
متن کامل