Submultiplicative Glivenko-Cantelli and Uniform Convergence of Revenues

نویسندگان

  • Noga Alon
  • Moshe Babaioff
  • Yannai A. Gonczarowski
  • Yishay Mansour
  • Shay Moran
  • Amir Yehudayoff
چکیده

In this work we derive a variant of the classic Glivenko-Cantelli Theorem, which asserts uniform convergence of the empirical Cumulative Distribution Function (CDF) to the CDF of the underlying distribution. Our variant allows for tighter convergence bounds for extreme values of the CDF. We apply our bound in the context of revenue learning, which is a well-studied problem in economics and algorithmic game theory. We derive sample-complexity bounds on the uniform convergence rate of the empirical revenues to the true revenues, assuming a bound on the kth moment of the valuations, for any (possibly fractional) k > 1. For uniform convergence in the limit, we give a complete characterization and a zeroone law: if the first moment of the valuations is finite, then uniform convergence almost surely occurs; conversely, if the first moment is infinite, then uniform convergence almost never occurs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniform Glivenko–Cantelli Classes

A class of sets, or functions, is said to be P–Glivenko–Cantelli if the empirical measure Pn converges in some sense to the true measure, P , as n → ∞, uniformly over the class of sets or functions. Thus, the notions of Glivenko–Cantelli, and likewise uniform Glivenko–Cantelli are for the most part qualitative assessments of how “well–behaved” a collection of sets or functions is, in the sense ...

متن کامل

A Counterexample Concerning the Extension of Uniform Strong Laws to Ergodic Processes

We present a construction showing that a class of sets C that is Glivenko-Cantelli for an i.i.d. process need not be Glivenko-Cantelli for every stationary ergodic process with the same one dimensional marginal distribution. This result provides a counterpoint to recent work extending uniform strong laws to ergodic processes, and a recent characterization of universal Glivenko Cantelli classes.

متن کامل

Preservation Theorems for Glivenko-cantelli and Uniform Glivenko-cantelli Classes Aad Van Der Vaart and Jon

We show that the P Glivenko property of classes of functions F1; : : : ;Fk is preserved by a continuous function ' from R k to R in the sense that the new class of functions x! '(f1(x); : : : ; fk(x)); fi 2 Fi; i = 1; : : : ; k is again a Glivenko-Cantelli class of functions if it has an integrable envelope. We also prove an analogous result for preservation of the uniform Glivenko-Cantelli pro...

متن کامل

Preservation Theorems for Glivenko-Cantelli and Uniform Glivenko-Cantelli Classes

We show that the P−Glivenko property of classes of functions F1, . . . ,Fk is preserved by a continuous function φ from R to R in the sense that the new class of functions x → φ(f1(x), . . . , fk(x)), fi ∈ Fi, i = 1, . . . , k is again a Glivenko-Cantelli class of functions if it has an integrable envelope. We also prove an analogous result for preservation of the uniform Glivenko-Cantelli prop...

متن کامل

Uniform Glivenko-Cantelli Theorems and Concentration of Measure in the Mathematical Modelling of Learning

This paper surveys certain developments in the use of probabilistic techniques for the modelling of generalization in machine learning. Building on ‘uniform convergence’ results in probability theory, a number of approaches to the problem of quantifying generalization have been developed in recent years. Initially these models addressed binary classification, and as such were applicable, for ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017