STP: Skills, Tactics and Plays for Multi-Robot Control in Adversarial Environments

نویسندگان

  • Brett Browning
  • James Bruce
  • Michael Bowling
چکیده

In an adversarial multi-robot task, such as playing robot soccer, decisions for team and single robot behavior must be made quickly to take advantage of short-term fortuitous events when they occur. When no such opportunities exist, the team must execute sequences of coordinated action across team members that increases the likelihood of future opportunities. We have developed a hierarchical architecture, called STP, to control an autonomous team of robots operating in an adversarial environment. STP consists of Skills for executing the low-level actions that make up robot behavior, Tactics for determining what skills to execute, and Plays for coordinating synchronized activity amongst team members. Our STP architecture combines each of these components to achieve autonomous team control. Moreover, the STP hierarchy allows for fast team response in adversarial environments while carrying out actions with longer goals. In this article, we present our STP architecture for controlling an autonomous robot team in a dynamic adversarial task that allows for coordinated team activity towards long-term goals, with the ability to respond rapidly to dynamic events. Secondly, we present the sub-component of skills and tactics as a generalized, single-robot control hierarchy for hierarchical problem decomposition with flexible control policy implementation and reuse. Thirdly, we contribute our play techniques as a generalized method for encoding and synchronizing team behavior, providing multiple competing team responses, and for supporting effective strategy adaptation against opponent teams. STP has been fully implemented on a robot platform and thoroughly tested against a variety of unknown opponent teams under in a number of RoboCup robot soccer competitions. We present these competition results as a mechanism to analyze the performance of STP in a real setting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ef cient Physics-Based Planning: Sampling Search Via Non-Deterministic Tactics and Skills

Motion planning for mobile agents, such as robots, acting in the physical world is a challenging task, which traditionally concerns safe obstacle avoidance. We are interested in physics-based planning beyond collision-free navigation goals, in which the agent also needs to achieve its goals, including purposefully manipulate non-actuated bodies, in environments that contain multiple physically ...

متن کامل

Efficient physics-based planning: sampling search via non-deterministic tactics and skills

Motion planning for mobile agents, such as robots, acting in the physical world is a challenging task, which traditionally concerns safe obstacle avoidance. We are interested in physics-based planning beyond collision-free navigation goals, in which the agent also needs to achieve its goals, including purposefully manipulate non-actuated bodies, in environments that contain multiple physically ...

متن کامل

Effects of Moving Landmark’s Speed on Multi-Robot Simultaneous Localization and Mapping in Dynamic Environments

Even when simultaneous localization and mapping (SLAM) solutions have been broadly developed, the vast majority of them relate to a single robot performing measurements in static environments. Researches show that the performance of SLAM algorithms deteriorates under dynamic environments. In this paper, a multi-robot simultaneous localization and mapping (MR-SLAM) system is implemented within a...

متن کامل

Map-merging in Multi-robot Simultaneous Localization and Mapping Process Using Two Heterogeneous Ground Robots

In this article, a fast and reliable map-merging algorithm is proposed to produce a global two dimensional map of an indoor environment in a multi-robot simultaneous localization and mapping (SLAM) process. In SLAM process, to find its way in this environment, a robot should be able to determine its position relative to a map formed from its observations. To solve this complex problem, simultan...

متن کامل

Mobile robot wall-following control using a behavior-based fuzzy controller in unknown environments

This paper addresses a behavior-based fuzzy controller (BFC) for mobile robot wall-following control.The wall-following task is usually used to explore an unknown environment.The proposed BFC consists of three sub-fuzzy controllers, including Straight-based Fuzzy Controller (SFC),Left-based Fuzzy Controller (LFC), and Right-based Fuzzy Controller (RFC).The proposed wall-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004