Using urinary biomarkers to elucidate dose-related patterns of human benzene metabolism.

نویسندگان

  • Sungkyoon Kim
  • Roel Vermeulen
  • Suramya Waidyanatha
  • Brent A Johnson
  • Qing Lan
  • Nathaniel Rothman
  • Martyn T Smith
  • Luoping Zhang
  • Guilan Li
  • Min Shen
  • Songnian Yin
  • Stephen M Rappaport
چکیده

Although the toxicity of benzene has been linked to its metabolism, the dose-related production of metabolites is not well understood in humans, particularly at low levels of exposure. We investigated unmetabolized benzene in urine (UBz) and all major urinary metabolites [phenol (PH), E,E-muconic acid (MA), hydroquinone (HQ) and catechol (CA)] as well as the minor metabolite, S-phenylmercapturic acid (SPMA), in 250 benzene-exposed workers and 139 control workers in Tianjin, China. Median levels of benzene exposure were approximately 1.2 p.p.m. for exposed workers (interquartile range: 0.53-3.34 p.p.m.) and 0.004 p.p.m. for control workers (interquartile range: 0.002-0.007 p.p.m.). (Exposures of control workers to benzene were predicted from levels of benzene in their urine.) Metabolite production was investigated among groups of 30 workers aggregated by their benzene exposures. We found that the urine concentration of each metabolite was consistently elevated when the group's median benzene exposure was at or above the following air concentrations: 0.2 p.p.m. for MA and SPMA, 0.5 p.p.m. for PH and HQ, and 2 p.p.m. for CA. Dose-related production of the four major metabolites and total metabolites (micromol/l/p.p.m. benzene) declined between 2.5 and 26-fold as group median benzene exposures increased between 0.027 and 15.4 p.p.m. Reductions in metabolite production were most pronounced for CA and PH<1 p.p.m., indicating that metabolism favored production of the toxic metabolites, HQ and MA, at low exposures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Association between GST genetic polymorphism and dose-related production of urinary benzene metabolite markers, trans, trans-muconic acid and S-phenylmercapturic acid.

The urinary benzene metabolites, trans, trans-muconic acid (ttMA) and S-phenylmercapturic acid (SPMA), are widely used as benzene exposure biomarkers. The influence of the glutathione S-transferase (GST) genetic polymorphism on the excretion levels of urinary ttMA and/or SPMA has been investigated. The association between dose-related production of urinary benzene metabolites and benzene exposu...

متن کامل

Human urinary carcinogen metabolites: biomarkers for investigating tobacco and cancer.

Measurement of human urinary carcinogen metabolites is a practical approach for obtaining important information about tobacco and cancer. This review presents currently available methods and evaluates their utility. Carcinogens and their metabolites and related compounds that have been quantified in the urine of smokers or non-smokers exposed to environmental tobacco smoke (ETS) include trans,t...

متن کامل

Liquid chromatography-mass spectrometry in occupational toxicology: a novel approach to the study of biotransformation of industrial chemicals.

Biological monitoring and biomarkers are used in occupational toxicology for a more accurate risk assessment of occupationally exposed people. Appropriate and validated biomarkers of internal dose, like urinary metabolites, besides to be positively correlated with external exposure, have a predictive value to the risk of adverse effects. The application of liquid chromatography-mass spectrometr...

متن کامل

Sub-acute Exposure to Benzene Accelerates the Aging Process of Red Blood Cells; an In vivo Study

Background: The well-known toxic effects of benzene toxicity are bone marrow depression, reduction in blood cell counts, and induction of leukemia and aplastic anemia. This study was designed to evaluate biomarkers of aging in red blood cells (RBCs). Methods: Mice were exposed to benzene (50, 100, and 200 mg/kg/day) orally for 28 days. A group of benzene-exposed mice were injected intraperiton...

متن کامل

Modeling human metabolism of benzene following occupational and environmental exposures.

We used natural spline (NS) models to investigate nonlinear relationships between levels of benzene metabolites (E,E-muconic acid, S-phenylmercapturic acid, phenol, hydroquinone, and catechol) and benzene exposure among 386 exposed and control workers in Tianjin, China. After adjusting for background levels (estimated from the 60 control subjects with the lowest benzene exposures), expected mea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Carcinogenesis

دوره 27 4  شماره 

صفحات  -

تاریخ انتشار 2006