Nucleosome mapping across the CFTR locus identifies novel regulatory factors
نویسندگان
چکیده
Nucleosome positioning on the chromatin strand plays a critical role in regulating accessibility of DNA to transcription factors and chromatin modifying enzymes. Hence, detailed information on nucleosome depletion or movement at cis-acting regulatory elements has the potential to identify predicted binding sites for trans-acting factors. Using a novel method based on enrichment of mononucleosomal DNA by bacterial artificial chromosome hybridization, we mapped nucleosome positions by deep sequencing across 250 kb, encompassing the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CFTR shows tight tissue-specific regulation of expression, which is largely determined by cis-regulatory elements that lie outside the gene promoter. Although multiple elements are known, the repertoire of transcription factors that interact with these sites to activate or repress CFTR expression remains incomplete. Here, we show that specific nucleosome depletion corresponds to well-characterized binding sites for known trans-acting factors, including hepatocyte nuclear factor 1, Forkhead box A1 and CCCTC-binding factor. Moreover, the cell-type selective nucleosome positioning is effective in predicting binding sites for novel interacting factors, such as BAF155. Finally, we identify transcription factor binding sites that are overrepresented in regions where nucleosomes are depleted in a cell-specific manner. This approach recognizes the glucocorticoid receptor as a novel trans-acting factor that regulates CFTR expression in vivo.
منابع مشابه
Nucleosome occupancy reveals regulatory elements of the CFTR promoter
Access to regulatory elements of the genome can be inhibited by nucleosome core particles arranged along the DNA strand. Hence, sites that are accessible by transcription factors may be located by using nuclease digestion to identify the relative nucleosome occupancy of a genomic region. In order to define novel cis regulatory elements in the ∼2.7-kb promoter region of the cystic fibrosis trans...
متن کاملAnalysis of long-range interactions in primary human cells identifies cooperative CFTR regulatory elements.
A mechanism by which control DNA elements regulate transcription over large linear genomic distances is by achieving close physical proximity with genes, and looping of the intervening chromatin paths. Alterations of such regulatory 'chromatin looping' systems are likely to play a critical role in human genetic disease at large. Here, we studied the spatial organization of a ≈790 kb locus encom...
متن کاملNovel regulatory mechanisms for the CFTR gene.
The CFTR (cystic fibrosis transmembrane conductance regulator) gene, which when mutated causes cystic fibrosis, encompasses nearly 200 kb of genomic DNA at chromosome 7q31.2. It is flanked by two genes ASZ1 [ankyrin repeat, SAM (sterile alpha-motif) and basic leucine zipper] and CTTNBP2 (cortactin-binding protein 2), which have very different expression profiles. CFTR is expressed primarily in ...
متن کاملThe epigenetic signature of CFTR expression is co-ordinated via chromatin acetylation through a complex intronic element.
The CFTR (cystic fibrosis transmembrane conductance regulator) gene is a tightly regulated and differentially expressed transcript in many mucosal epithelial cell types. It appears that DNA sequence variations alone do not explain CFTR-related gastrointestinal disease patterns and that epigenetic modifiers influence CFTR expression. Our aim was to characterize the native chromatin environment i...
متن کاملStructured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions.
Transcription factors canonically bind nucleosome-free DNA, making the positioning of nucleosomes within regulatory regions crucial to the regulation of gene expression. Using the assay of transposase accessible chromatin (ATAC-seq), we observe a highly structured pattern of DNA fragment lengths and positions around nucleosomes in Saccharomyces cerevisiae, and use this distinctive two-dimension...
متن کامل