MHC class I–specific antibody binding to nonhematopoietic cells drives complement activation to induce transfusion-related acute lung injury in mice
نویسندگان
چکیده
Transfusion-related acute lung injury (TRALI), a form of noncardiogenic pulmonary edema that develops during or within 6 h after a blood transfusion, is the most frequent cause of transfusion-associated death in the United States. Because development of TRALI is associated with donor antibodies (Abs) reactive with recipient major histocompatibility complex (MHC), a mouse model has been studied in which TRALI-like disease is caused by injecting mice with anti-MHC class I monoclonal Ab (mAb). Previous publications with this model have concluded that disease is caused by FcR-dependent activation of neutrophils and platelets, with production of reactive oxygen species that damage pulmonary vascular endothelium. In this study, we confirm the role of reactive oxygen species in the pathogenesis of this mouse model of TRALI and show ultrastructural evidence of pulmonary vascular injury within 5 min of anti-MHC class I mAb injection. However, we demonstrate that disease induction in this model involves macrophages rather than neutrophils or platelets, activation of complement and production of C5a rather than activation of FcγRI, FcγRIII, or FcγRIV, and binding of anti-MHC class I mAb to non-BM-derived cells such as pulmonary vascular endothelium. These observations have important implications for the prevention and treatment of TRALI.
منابع مشابه
Transfusion-related acute lung injury in multiple traumatized patients
Background: Many of the multiple traumatized patients who refer to the hospital need transfusion. Transfusion-related acute lung injury (TRALI) is a serious clinical syndrome associated with the transfusion of plasma-containing blood components. In the article, we present a case of TRALI following transfusion of packed red blood cells Case Presentation: A 24 year old male referred to Shahid Beh...
متن کاملMirasol pathogen reduction technology treatment of human whole blood does not induce acute lung injury in mice
In resource-limited settings and in the military theater, fresh human whole blood is commonly transfused, but infectious risks are a concern. Sophisticated molecular testing for potential infectious agents in the whole blood is often unavailable. To address this unmet need, pathogen reduction technology (PRT) has been developed, and it is an effective approach to inactivate a broad range of pat...
متن کاملAntibody-induced neutrophil activation as a trigger for transfusion-related acute lung injury in an ex vivo rat lung model.
Transfusion-related acute lung injury (TRALI) is a hazardous complication of transfusion and has become the leading cause of transfusion-related death in the United States and United Kingdom. Although leukoagglutinating antibodies have been frequently shown to be associated with the syndrome, the mechanism by which they induce TRALI is poorly understood. Therefore, we reproduced TRALI in an ex ...
متن کاملEvidence that humoral allograft rejection in lung transplant patients is not histocompatibility antigen-related.
We have recently recognized humoral rejection (HR) in lung allograft recipients and its association with acute and chronic graft dysfunction. We have shown that C4d, a stable marker of classic complement activation, is deposited in lung allografts, correlating with clinical rejection and parenchymal injury. The antigenic target may be endothelium in the setting of recurrent acute rejection whil...
متن کاملPlatelet depletion and aspirin treatment protect mice in a two-event model of transfusion-related acute lung injury.
Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-associated mortality in the US. Previously, we established an immune-mediated TRALI mouse model, wherein mice with cognate antigen were challenged with MHC class I mAb. In this study, when mice housed in a rodent, specific pathogen-free barrier room were challenged with MHC I mAb, there was significant protection ...
متن کامل