Pen-2 is sequestered in the endoplasmic reticulum and subjected to ubiquitylation and proteasome-mediated degradation in the absence of presenilin.
نویسندگان
چکیده
The gamma-secretase complex catalyzes intramembrane proteolysis of a number of transmembrane proteins, including amyloid precursor protein, Notch, ErbB4, and E-cadherin. gamma-Secretase is known to contain four major protein constituents: presenilin (PS), nicastrin, Aph-1, and Pen-2, all of which are integral membrane proteins. There is increasing evidence that the formation of the complex and the stability of the individual components are tightly controlled in the cell, assuring correct composition of functional complexes. In this report, we investigate the topology, localization, and mechanism for destabilization of Pen-2 in relation to PS function. We show that PS1 regulates the subcellular localization of Pen-2: in the absence of PS, Pen-2 is sequestered in the endoplasmic reticulum (ER) and not transported to post-ER compartments, where the mature gamma-secretase complexes reside. PS deficiency also leads to destabilization of Pen-2, which is alleviated by proteasome inhibitors. In keeping with this, we show that Pen-2, which adopts a hairpin structure with the N and C termini facing the luminal space, is ubiquitylated prior to degradation and presumably retrotranslocated from the ER to the cytoplasm. Collectively, our data suggest that failure to become incorporated into the gamma-secretase complex leads to degradation of Pen-2 through the ER-associated degradation-proteasome pathway.
منابع مشابه
The ubiquitin-proteasome pathway of intracellular proteolysis.
Intracellular proteins are targeted for degradation by the covalent attachment of chains of the small protein ubiquitin; a process known as ubiquitylation. Many proteins are phosphorylated prior to ubiquitylation, and therefore ubiquitylation and degradation of these proteins is regulated by kinase activity and signalling cascades. Many ubiquitylated proteins are degraded by the 26 S proteasome...
متن کاملERAD of proteins containing aberrant transmembrane domains requires ubiquitylation of cytoplasmic lysine residues
Clearance of misfolded proteins from the endoplasmic reticulum (ER) is mediated by the ubiquitin-proteasome system in a process known as ER-associated degradation (ERAD). The mechanisms through which proteins containing aberrant transmembrane domains are degraded by ERAD are poorly understood. To address this question, we generated model ERAD substrates based on CD8 with either a non-native tra...
متن کاملDerlin-1 promotes ubiquitylation and degradation of the epithelial Na+ channel, ENaC.
Ubiquitylation of the epithelial Na+ channel (ENaC) plays a critical role in cellular functions, including transmembrane transport of Na+, Na+ and water balance, and blood pressure stabilization. Published studies have suggested that ENaC subunits are targets of ER-related degradation (ERAD) in yeast systems. However, the molecular mechanism underlying proteasome-mediated degradation of ENaC su...
متن کاملGating Behavior of Endoplasmic Reticulum Potassium Channels of Rat Hepatocytes in Diabetes
Background: Defects in endoplasmic reticulum homeostasis are common occurrences in different diseases, such as diabetes, in which the function of endoplasmic reticulum is disrupted. It is now well established that ion channels of endoplasmic reticulum membrane have a critical role in endoplasmic reticulum luminal homeostasis. Our previous studies showed the presence of an ATP-sensitive cationic...
متن کاملPeripheral endoplasmic reticulum localization of the Gp78 ubiquitin ligase activity.
Gp78 (also known as AMFR and RNF45) is an E3 ubiquitin ligase that targets proteins for proteasomal degradation through endoplasmic reticulum (ER)-associated degradation (ERAD). In this study, we showed that gp78-mediated ubiquitylation is initiated in the peripheral ER. Substrate monoubiquitylation and gp78 CUE domain integrity restricted substrate to the peripheral ER, where CUE domain intera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 279 16 شماره
صفحات -
تاریخ انتشار 2004