Additive Schwarz preconditioners for interpolation of divergence-free vector fields on spheres
نویسندگان
چکیده
The linear system arised from the interpolation problem of surface divergence-free vector fields using radial basis functions (RBFs) tends to be ill-conditioned when the separation radius of the scattered data is small. When the surface under consideration is the unit sphere, we introduce a preconditioner based on the additive Schwarz method to accelerate the solution process. Theoretical estimates for the condition number of the preconditioned matrix will be given. Numerical experiments using scattered data from MAGSAT satellite show the effectiveness of our preconditioner.
منابع مشابه
Two-level additive Schwarz preconditioners for nonconforming finite element methods
Two-level additive Schwarz preconditioners are developed for the nonconforming P1 finite element approximation of scalar second-order symmetric positive definite elliptic boundary value problems, the Morley finite element approximation of the biharmonic equation, and the divergence-free nonconforming P1 finite element approximation of the stationary Stokes equations. The condition numbers of th...
متن کاملExtension of Two-level Schwarz Preconditioners to Symmetric Indefinite Problems TR2008-914
Two-level overlapping Schwarz preconditioners are extended for use for a class of large, symmetric, indefinite systems of linear algebraic equations. The focus is on an enriched coarse space with additional basis functions built from free space solutions of the underlying partial differential equation. GMRES is used to accelerate the convergence of preconditioned systems. Both additive and hybr...
متن کاملOn additive Schwarz preconditioners for sparse grid discretizations
Based on the framework of subspace splitting and the additive Schwarz scheme, we give bounds for the condition number of multilevel preconditioners for sparse grid discretizations of elliptic model problems. For a BXP-like preconditioner we derive an estimate of the optimal order O(1) and for a HB-like variant we obtain an estimate of the order O(k · 2), where k denotes the number of levels emp...
متن کاملParallel scalability study of three dimensional additive Schwarz preconditioners in non-overlapping domain decomposition
In this paper we study the parallel scalability of variants of additive Schwarz preconditioners for three dimensional non-overlapping domain decomposition methods. To alleviate the computational cost, both in terms of memory and floating-point complexity, we investigate variants based on a sparse approximation or on mixed 32and 64-bit calculation. The robustness of the preconditioners is illust...
متن کاملRestricted Additive Schwarz Method with Harmonic Overlap
In this paper, we introduce a new Schwarz preconditioner and with a new coarse space. We construct the preconditioner by grouping together, in one preconditioner, features from the additive overlapping Schwarz methods, from iterative substructuring methods and from a class of restricted additive Schwarz methods. The preconditioner is symmetric and considered as a symmetrized version of restrict...
متن کامل