Auditory-motor synchronization with temporally fluctuating sequences is dependent on fractal structure but not musical expertise
نویسندگان
چکیده
Fractal structure is a ubiquitous property found in nature and biology, and has been observed in processes at different levels of organization, including rhythmic behavior and musical structure. A temporal process is characterized as fractal when serial long-term correlations and statistical self-similarity (scaling) are present. Previous studies of sensorimotor synchronization using isochronous (non-fractal) stimuli show that participants' errors exhibit persistent structure (positive long-term correlations), while their inter-tap intervals (ITIs) exhibit anti-persistent structure (negative long-term correlations). Auditory-motor synchronization has not been investigated with anti-persistent stimuli. In the current study, we systematically investigated whether the fractal structure of auditory rhythms was reflected in the responses of participants who were asked to coordinate their taps with each event. We asked musicians and non-musicians to tap with 12 different rhythms that ranged from anti-persistent to persistent. The scaling exponents of the ITIs were strongly correlated with the scaling exponents of the stimuli, showing that the long-term structure of the participants' taps scaled with the long-term structure of the stimuli. Surprisingly, the performance of the musicians was not significantly better than that of the non-musicians. Our results imply that humans are able to readily adapt (rather than simply react) to the overall statistical structure of temporally fluctuating stimuli, regardless of musical skill.
منابع مشابه
COGNITIVE NEUROSCIENCE Inter-subject synchronization of brain responses during natural music listening
Music is a cultural universal and a rich part of the human experience. However, little is known about common brain systems that support the processing and integration of extended, naturalistic ‘real-world’ music stimuli. We examined this question by presenting extended excerpts of symphonic music, and two pseudomusical stimuli in which the temporal and spectral structure of the Natural Music co...
متن کاملInter-subject synchronization of brain responses during natural music listening.
Music is a cultural universal and a rich part of the human experience. However, little is known about common brain systems that support the processing and integration of extended, naturalistic 'real-world' music stimuli. We examined this question by presenting extended excerpts of symphonic music, and two pseudomusical stimuli in which the temporal and spectral structure of the Natural Music co...
متن کاملNeuroscientific Investigations of Musical Rhythm
INTRODUCTION The temporal structure of music enables synchronized movement, such as tapping one’s foot, clapping, or dancing to the ‘beat’ of musical rhythms. Such movement is precisely timed to align with the periodic, salient beats in the music, and with the movements of other individuals. Given this relationship between musical rhythm and movement, it is perhaps unsurprising that the brain’s...
متن کاملAuditory Evoked Responses in Musicians during Passive Vowel Listening Are Modulated by Functional Connectivity between Bilateral Auditory-related Brain Regions
Currently, there is striking evidence showing that professional musical training can substantially alter the response properties of auditory-related cortical fields. Such plastic changes have previously been shown not only to abet the processing of musical sounds, but likewise spectral and temporal aspects of speech. Therefore, here we used the EEG technique and measured a sample of musicians a...
متن کاملNeural correlates of auditory temporal predictions during sensorimotor synchronization
Musical ensemble performance requires temporally precise interpersonal action coordination. To play in synchrony, ensemble musicians presumably rely on anticipatory mechanisms that enable them to predict the timing of sounds produced by co-performers. Previous studies have shown that individuals differ in their ability to predict upcoming tempo changes in paced finger-tapping tasks (indexed by ...
متن کامل