Taxonomy of Low-level Hybridization (LLH) for PSO-GA
نویسندگان
چکیده
Particle Swarm Optimization (PSO) is a popular algorithm used extensively in continuous optimization. One of its well-known drawbacks is its propensity for premature convergence. Many techniques have been proposed for alleviating this problem. One of the popular and promising approaches is low-level hybridization (LLH) of PSO with Genetic Algorithm (GA). Nevertheless, the LLH implementation is considerably difficult due to internal structure modifications of the original hybrid algorithms. Many success works have been reported on LLH for PSO-GA but a wide range of presumption terms and terminology are used. This paper describes the numerous techniques of LLH for PSO-GA in a form of simple taxonomy. Then, examples of several implementation models based on the taxonomy are given. Recent trends are also briefly discussed from an implementations review.
منابع مشابه
THD Minimization of the Output Voltage for Asymmetrical 27-Level Inverter using GA and PSO Methods
Multilevel voltage source inverters have several advantages compare to traditional voltage source inverter. These inverters reduce cost, get better voltage waveform and decrease Total Harmonic Distortion (THD) by increasing the levels of output voltage. In this paper Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) methods are used to find the switching angles for achieving to the m...
متن کاملApplication of Particle Swarm Optimization and Genetic Algorithm Techniques to Solve Bi-level Congestion Pricing Problems
The solutions used to solve bi-level congestion pricing problems are usually based on heuristic network optimization methods which may not be able to find the best solution for these type of problems. The application of meta-heuristic methods can be seen as viable alternative solutions but so far, it has not received enough attention by researchers in this field. Therefore, the objective of thi...
متن کاملHybrid Heuristic Optimization for Benchmark Datasets
This paper introduces hybridization of particle swarm optimization (PSO) with genetic algorithm (GA) denoted as PSO+GA provides an efficient approach which is used to solve non linear chaotic datasets. The proposed algorithm employed in probabilistic neural network(PNN) which is a variant of radial basic function artificial neural network (RBFANN) for finding precise value spread factor for acc...
متن کاملHybrid Pso/ Self-adaptive Evolutionary Programs for Economic Dispatch with Nonsmooth Cost Function
This paper investigates into hybridization between PSO and self-adaptive evolutionary programming techniques for solving economic dispatch (ED) problem with non-smooth cost curves where conventional gradient based methods are in-applicable. The convergence capability of evolutionary programming technique is enhanced with hybridization of self-adaptive evolutionary programming technique with PSO...
متن کاملComparative Study of Particle Swarm Optimization and Genetic Algorithm Applied for Noisy Non-Linear Optimization Problems
Optimization of noisy non-linear problems plays a key role in engineering and design problems. These optimization problems can't be solved effectively by using conventional optimization methods. However, metaheuristic algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) seem very efficient to approach in these problems and became very popular. The efficiency of these ...
متن کامل