Lack of BACE1 S-palmitoylation reduces amyloid burden and mitigates memory deficits in transgenic mouse models of Alzheimer's disease.

نویسندگان

  • Robert J Andrew
  • Celia G Fernandez
  • Molly Stanley
  • Hong Jiang
  • Phuong Nguyen
  • Richard C Rice
  • Virginie Buggia-Prévot
  • Pierre De Rossi
  • Kulandaivelu S Vetrivel
  • Raza Lamb
  • Arnau Argemi
  • Emilie S Allaert
  • Elle M Rathbun
  • Sofia V Krause
  • Steven L Wagner
  • Angèle T Parent
  • David M Holtzman
  • Gopal Thinakaran
چکیده

Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by pathological brain lesions and a decline in cognitive function. β-Amyloid peptides (Aβ), derived from proteolytic processing of amyloid precursor protein (APP), play a central role in AD pathogenesis. β-Site APP cleaving enzyme 1 (BACE1), the transmembrane aspartyl protease which initiates Aβ production, is axonally transported in neurons and accumulates in dystrophic neurites near cerebral amyloid deposits in AD. BACE1 is modified by S-palmitoylation at four juxtamembrane cysteine residues. S-palmitoylation is a dynamic posttranslational modification that is important for trafficking and function of several synaptic proteins. Here, we investigated the in vivo significance of BACE1 S-palmitoylation through the analysis of knock-in mice with cysteine-to-alanine substitution at the palmitoylated residues (4CA mice). BACE1 expression, as well as processing of APP and other neuronal substrates, was unaltered in 4CA mice despite the lack of BACE1 S-palmitoylation and reduced lipid raft association. Whereas steady-state Aβ levels were similar, synaptic activity-induced endogenous Aβ production was not observed in 4CA mice. Furthermore, we report a significant reduction of cerebral amyloid burden and BACE1 accumulation in dystrophic neurites in the absence of BACE1 S-palmitoylation in mouse models of AD amyloidosis. Studies in cultured neurons suggest that S-palmitoylation is required for dendritic spine localization and axonal targeting of BACE1. Finally, the lack of BACE1 S-palmitoylation mitigates cognitive deficits in 5XFAD mice. Using transgenic mouse models, these results demonstrate that intrinsic posttranslational S-palmitoylation of BACE1 has a significant impact on amyloid pathogenesis and the consequent cognitive decline.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial reduction of BACE1 improves synaptic plasticity, recent and remote memories in Alzheimer's disease transgenic mice.

beta-Site amyloid precursor protein cleaving enzyme 1 (BACE1) initiates amyloid-beta (Abeta) generation that is central to the pathophysiology of Alzheimer's disease (AD). Therefore, lowering Abeta levels by BACE1 manipulations represents a key therapeutic strategy, but it remains unclear whether partial inhibition of BACE1, as expected for AD treatments, can improve memory deficits. In this st...

متن کامل

The cysteine protease inhibitor, E64d, reduces brain amyloid-β and improves memory deficits in Alzheimer's disease animal models by inhibiting cathepsin B, but not BACE1, β-secretase activity.

The cysteine protease cathepsin B is a potential drug target for reducing brain amyloid-β (Aβ) and improving memory in Alzheimer's disease (AD), as reduction of cathepsin B in transgenic mice expressing human wild-type amyloid-β protein precursor (AβPP) results in significantly decreased brain Aβ. Cathepsin B cleaves the wild-type β-secretase site sequence in AβPP to produce Aβ, and cathepsin B...

متن کامل

BACE1 Deficiency Rescues Memory Deficits and Cholinergic Dysfunction in a Mouse Model of Alzheimer's Disease

beta-site APP cleaving enzyme 1 (BACE1) is the beta-secretase enzyme required for generating pathogenic beta-amyloid (Abeta) peptides in Alzheimer's disease (AD). BACE1 knockout mice lack Abeta and are phenotypically normal, suggesting that therapeutic inhibition of BACE1 may be free of mechanism-based side effects. However, direct evidence that BACE1 inhibition would improve cognition is lacki...

متن کامل

BACE1 gene deletion prevents neuron loss and memory deficits in 5XFAD APP/PS1 transgenic mice.

Evidence suggests that beta-amyloid (Abeta) peptide triggers a pathogenic cascade leading to neuronal loss in Alzheimer's disease (AD). However, the causal link between Abeta and neuron death in vivo remains unclear since most animal models fail to recapitulate the dramatic cell loss observed in AD. We have recently developed transgenic mice that overexpress human APP and PS1 with five familial...

متن کامل

Icariin Decreases the Expression of APP and BACE-1 and Reduces the β-amyloid Burden in an APP Transgenic Mouse Model of Alzheimer's Disease

OBJECTIVE The purpose of this study was to investigate the effects and pharmacological mechanisms of icariin, which is the main component in the traditional Chinese herb Epimedium, on β-amyloid (Aβ) production in an amyloid precursor protein (APP) transgenic (Tg) mouse model of Alzheimer's disease (AD). METHODS APPV717I Tg mice were randomly divided into a model group and icariin-treated (30 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 45  شماره 

صفحات  -

تاریخ انتشار 2017