Uniaxially-aligned PVDF nanofibers as a sensor and transmitter for biotelemetry.
نویسندگان
چکیده
Biotelemetry has become an important part of medical research for patient care by remotely monitoring continuing biological processes and physiological functions. However, current biotelemetry systems are complex requiring multiple electronic components to function: a battery, a sensor, and a transmitter, and a receiver. Another paramount concern of biotelemetry is the coupling of its in vivo portion to external supporting equipment. Here we report a novel biotelemetry device made primarily of a coiled bundle of uniaxially-aligned biocompatible polyvinylidene fluoride (PVDF) nanofibers of ∼200 nm in diameter and with piezoelectric properties that can serve concurrently as a power source, sensor, and transmitter. We tested this device on a cantilever beam that was periodically deflected at its free end. Without a power supply the coil of a nanofiber bundle is shown to generate and transmit an electrical signal wirelessly in response to the beam deflection which was received by an external receiver. The coil of a nanofiber bundle was encapsulated in a thin biocompatible polymer shell for device integrity and moisture isolation. Our results suggest that the device can potentially serve as a mechanical sensor and biotelemeter for various in vitro and in vivo biomedical applications.
منابع مشابه
Tactile-Sensing Based on Flexible PVDF Nanofibers via Electrospinning: A Review
The flexible tactile sensor has attracted widespread attention because of its great flexibility, high sensitivity, and large workable range. It can be integrated into clothing, electronic skin, or mounted on to human skin. Various nanostructured materials and nanocomposites with high flexibility and electrical performance have been widely utilized as functional materials in flexible tactile sen...
متن کاملElectrospun Aligned Fibrous Arrays and Twisted Ropes: Fabrication, Mechanical and Electrical Properties, and Application in Strain Sensors
Electrospinning (e-spinning) is a versatile technique to fabricate ultrathin fibers from a rich variety of functional materials. In this paper, a modified e-spinning setup with two-frame collector is proposed for the fabrication of highly aligned arrays of polystyrene (PS) and polyvinylidene fluoride (PVDF) nanofibers, as well as PVDF/carbon nanotube (PVDF/CNT) composite fibers. Especially, it ...
متن کاملFocal adhesion kinase regulation in stem cell alignment and spreading on nanofibers.
While electrospun nanofibers have demonstrated the potential for novel tissue engineering scaffolds, very little is known about the molecular mechanism of how cells sense and adapt to nanofibers. Here, we revealed the role of focal adhesion kinase (FAK), one of the key molecular sensors in the focal adhesion complex, in regulating mesenchymal stem cell (MSC) shaping on nanofibers. We produced u...
متن کاملA Fast Response Ammonia Sensor Based on Coaxial PPy–PAN Nanofiber Yarn
Highly orientated polypyrrole (PPy)-coated polyacrylonitrile (PAN) (PPy-PAN) nanofiber yarn was prepared with an electrospinning technique and in-situ chemical polymerization. The morphology and chemical structure of PPy-PAN nanofiber yarn was characterized by scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and fou...
متن کاملAligned and random nanofibrous nanocomposite scaffolds for bone tissue engineering
Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polycaprolactone (PCL), poly (vinyl alcohol) (PVA) and hydroxyapatite nanoparticles (nHA). The morphology and mechanical characteristics of the nanofibers were evaluated using scanning electron microscopy and tensile testing, respectively. Scanning electron microscopy revealed fibers with an average diameter of 123 ± 3...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Analyst
دوره 138 23 شماره
صفحات -
تاریخ انتشار 2013