On Factor Width and Symmetric H-matrices

نویسندگان

  • Erik G. Boman
  • Doron Chen
  • Ojas Parekh
  • Sivan Toledo
چکیده

We define a matrix concept we call factor width. This gives a hierarchy of matrix classes for symmetric positive semidefinite matrices, or a set of nested cones. We prove that the set of symmetric matrices with factor width at most two is exactly the class of (possibly singular) symmetric H-matrices (also known as generalized diagonally dominant matrices) with positive diagonals, H+. We prove bounds on the factor width, including one that is tight for factor widths up to two, and pose several open questions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Factor Widths of Nonnegative Matrices

Factor widths of nonnegative integral positive semidefinite square matrices are investigated. The nonnegative factor width, the exact factor width and the binary factor width of such matrices are introduced. Some lower and upper bounds for these widths are obtained. Nonnegative symmetric (completely positive) matrices with some given nonnegative (binary) factor widths

متن کامل

Rank-width and Well-quasi-ordering of Skew-Symmetric or Symmetric Matrices (extended abstract)

We prove that every infinite sequence of skew-symmetric or symmetric matrices M1, M2, . . . over a fixed finite field must have a pair Mi, Mj (i < j) such that Mi is isomorphic to a principal submatrix of the Schur complement of a nonsingular principal submatrix in Mj , if those matrices have bounded rank-width. This generalizes three theorems on well-quasi-ordering of graphs or matroids admitt...

متن کامل

Properties of Central Symmetric X-Form Matrices

In this paper we introduce a special form of symmetric matrices that is called central symmetric $X$-form matrix and study some properties, the inverse eigenvalue problem and inverse singular value problem for these matrices.

متن کامل

Buckling Behaviors of Symmetric and Antisymmetric Functionally Graded Beams

The present study investigates buckling characteristics of both nonlinear symmetric power and sigmoid functionally graded (FG) beams. The volume fractions of metal and ceramic are assumed to be distributed through a beam thickness by the sigmoid-law distribution (S-FGM), and the symmetric power function (SP-FGM). These functions have smooth variation of properties across the boundary rather tha...

متن کامل

Well-Quasi-Ordering of Matrices under Schur Complement and Applications to Directed Graphs

In [Rank-Width and Well-Quasi-Ordering of Skew-Symmetric or Symmetric Matrices, arXiv:1007.3807v1] Oum proved that, for a fixed finite field F, any infinite sequenceM1,M2, . . . of (skew) symmetric matrices over F of bounded F-rank-width has a pair i < j, such that Mi is isomorphic to a principal submatrix of a principal pivot transform of Mj . We generalise this result to σ-symmetric matrices ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004