Adaptive Elastic Net for Generalized Methods of Moments.

نویسندگان

  • Mehmet Caner
  • Hao Helen Zhang
چکیده

Model selection and estimation are crucial parts of econometrics. This paper introduces a new technique that can simultaneously estimate and select the model in generalized method of moments (GMM) context. The GMM is particularly powerful for analyzing complex data sets such as longitudinal and panel data, and it has wide applications in econometrics. This paper extends the least squares based adaptive elastic net estimator of Zou and Zhang (2009) to nonlinear equation systems with endogenous variables. The extension is not trivial and involves a new proof technique due to estimators lack of closed form solutions. Compared to Bridge-GMM of Caner (2009), we allow for the number of parameters to diverge to infinity as well as collinearity among a large number of variables, also the redundant parameters set to zero via a data dependent technique. This method has the oracle property, meaning that we can estimate nonzero parameters with their standard limit and the redundant parameters are dropped from the equations simultaneously. Numerical examples are used to illustrate the performance of the new method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Quantile Regression with Adaptive Elastic Net Penalty for Longitudinal Data

Longitudinal studies include the important parts of epidemiological surveys, clinical trials and social studies. In longitudinal studies, measurement of the responses is conducted repeatedly through time. Often, the main goal is to characterize the change in responses over time and the factors that influence the change. Recently, to analyze this kind of data, quantile regression has been taken ...

متن کامل

On Analytic Solutions of Elastic Net Displacements around a Circular Tunnel

Displacements around a tunnel, occurring as a result of excavation, consist of the elastic and plastic parts. In this paper, we discuss the elastic part of displacements as a result of excavation, called net displacement. In general, the previous analytical solutions presented for determining the displacements around a circular tunnel in an elastic medium do not give the net displacements...

متن کامل

Adaptive Multi-task Sparse Learning with an Application to fMRI Study

In this paper, we consider the multi-task sparse learning problem under the assumption that the dimensionality diverges with the sample size. The traditional l1/l2 multi-task lasso does not enjoy the oracle property unless a rather strong condition is enforced. Inspired by adaptive lasso, we propose a multi-stage procedure, adaptive multi-task lasso, to simultaneously conduct model estimation a...

متن کامل

Forecasting Euro Area Macroeconomic Variables with Bayesian Adaptive Elastic Net

I use the adaptive elastic net in a Bayesian framework and test its forecasting performance against lasso, adaptive lasso and elastic net (all used in a Bayesian framework) in a series of simulations, as well as in an empirical exercise for macroeconomic Euro area data. The results suggest that elastic net is the best model among the four Bayesian methods considered. Adaptive lasso, on the othe...

متن کامل

Adaptive Elastic Net GMM Estimator with Many Invalid Moment Conditions: A Simultaneous Model and Moment Selection

This paper develops an adaptive elastic-net GMM estimator with many possibly invalid moment conditions. We allow for the number of structural parameters (p0) as well as the number of moment conditions increasing with the sample size (n). The new estimator conducts simultaneous model and moment selection. We estimate the structural parameters along with parameters associated with the invalid mom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of business & economic statistics : a publication of the American Statistical Association

دوره 32 1  شماره 

صفحات  -

تاریخ انتشار 2014