Local spectral theory for normal operators in Krein spaces
نویسندگان
چکیده
Sign type spectra are an important tool in the investigation of spectral properties of selfadjoint operators in Krein spaces. It is our aim to show that also sign type spectra for normal operators in Krein spaces provide insight in the spectral nature of the operator: If the real part and the imaginary part of a normal operator in a Krein space have real spectra only and if the growth of the resolvent of the imaginary part (close to the real axis) is of finite order, then the normal operator possesses a local spectral function defined for Borel subsets of the spectrum which belong to positive (negative) type spectrum. Moreover, the restriction of the normal operator to the spectral subspace corresponding to such a Borel subset is a normal operator in some Hilbert space. In particular, if the spectrum consists entirely out of positive and negative type spectrum, then the operator is similar to a normal operator in some Hilbert space.
منابع مشابه
Spectral points of definite type and type π for linear operators and relations in Krein spaces
Spectral points of positive and negative type, and type π+ and type π− for closed linear operators and relations in Krein spaces are introduced with the help of approximative eigensequences. The main objective of the paper is to study these sign type properties in the non-selfadjoint case under various kinds of perturbations, e.g. compact perturbations and perturbations small in the gap metric....
متن کاملGeneralized Jacobi Operators in Krein Spaces
A special class of generalized Jacobi operators which are self-adjoint in Krein spaces is presented. A description of the resolvent set of such operators in terms of solutions of the corresponding recurrence relations is given. In particular, special attention is paid to the periodic generalized Jacobi operators. Finally, the spectral properties of generalized Jacobi operators are applied to pr...
متن کاملError bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert spaces via a Taylor's type expansion
On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.
متن کاملAsymptotic distribution of eigenvalues of the elliptic operator system
Since the theory of spectral properties of non-self-accession differential operators on Sobolev spaces is an important field in mathematics, therefore, different techniques are used to study them. In this paper, two types of non-self-accession differential operators on Sobolev spaces are considered and their spectral properties are investigated with two different and new techniques.
متن کاملMath 713 Spring 2012 Lecture Notes on Functional Analysis
1. Topological Vector Spaces 1 1.1. The Krein-Milman theorem 7 2. Banach Algebras 11 2.1. Commutative Banach algebras 14 2.2. ∗–Algebras (over complexes) 17 2.3. Problems on Banach algebras 20 3. The Spectral Theorem 21 3.1. Problems on the Spectral Theorem (Multiplication Operator Form) 26 3.2. Integration with respect to a Projection Valued Measure 27 3.3. The Functional Calculus 34 4. Unboun...
متن کامل