Weighted Caccioppoli-type Estimates and Weak Reverse Hölder Inequalities for A-harmonic Tensors

نویسندگان

  • SHUSEN DING
  • Christopher D. Sogge
چکیده

We obtain a local weighted Caccioppoli-type estimate and prove the weighted version of the weak reverse Hölder inequality for A-harmonic tensors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Reverse Hölder Inequality for the Solution to p-Harmonic Type System

Recently, amount of work about the A-harmonic equation for the differential forms has been done. In fact, the A-harmonic equation is an important generalization of the p-harmonic equation in R, p > 1, and the p-harmonic equation is a natural extension of the usual Laplace equation see 1 for the details . The reverse Hölder inequalities have been widely studied and frequently used in analysis an...

متن کامل

Global Caccioppoli-Type and Poincaré Inequalities with Orlicz Norms

The L-theory of solutions of the homogeneous A-harmonic equation d A x, dω 0 for differential forms has been very well developed in recent years. Many L-norm estimates and inequalities, including the Hardy-Littlewood inequalities, Poincaré inequalities, Caccioppoli-type estimates, and Sobolev imbedding inequalities, for solutions of the homogeneous A-harmonic equation have been established; see...

متن کامل

Weak reverse Hölder inequality of weakly A-harmonic sensors and Hölder continuity of A-harmonic sensors

* Correspondence: [email protected]. cn Department of Mathematics, Harbin Institute of Technology, Harbin 150001, PR China Abstract In this paper, we obtain the weak reverse Hölder inequality of weakly A-harmonic sensors and establish the Hölder continuity of A-harmonic sensors. Mathematics Subject Classification 2010: 58A10 · 35J60

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999