Bipolar/rod-shaped microglia are proliferating microglia with distinct M1/M2 phenotypes
نویسندگان
چکیده
Microglia are generally considered the resident immune cells in the central nervous system (CNS) that regulate the primary events of neuroinflammatory responses. Microglia also play key roles in repair and neurodegeneration of the CNS after injury. Recent studies showed that trains of bipolar/rod-shaped microglia align end-to-end along the CNS injury site during the initial recovery phase. However, the cellular characteristics of bipolar/rod-shaped microglia remain largely unknown. Here, we established a highly reproducible in vitro culture model system to enrich and characterize bipolar/rod-shaped microglia by simply generating multiple scratches on a poly-d-lysine/laminin-coated culture dish. Trains of bipolar/rod-shaped microglia formed and aligned along the scratches in a manner that morphologically resembled microglial trains observed in injured brain. These bipolar/rod-shaped microglia were highly proliferative and expressed various M1/M2 markers. Further analysis revealed that these bipolar/rod-shaped microglia quickly transformed into amoeboid microglia within 30 minutes of lipopolysaccharide treatment, leading to the upregulation of pro-inflammatory cytokine gene expression and the activation of Jak/Stat. In summary, our culture system provides a model to further characterize this highly dynamic cell type. We suggest that bipolar/rod-shaped microglia are crucial for repairing the damaged CNS and that the molecular mechanisms underlying their morphological changes may serve as therapeutic biomarkers.
منابع مشابه
P108: Microglia in Traumatic Brain Injury
Microglia is one of the first innate immune components. These cells account about 5 to 10% of the entire adult brain cells and are activated by trauma. Complex-mediated inflammatory responses occur through cellular and molecular events during and after the traumatic brain injury (TBI). In-lesion area astrocytes, microglia, and damaged neurons begin to secrete cytokines and chemokines. Microglia...
متن کاملP130: The Role of Rho-Kinase (ROCK) in Microglia/Macrophage Polarization in Neuroinflammatory Diseases
Macrophage/microglia with heterogonous phenotype and function under physiological and pathological conditions are the main cell lineage involved in inducing immune responses in neuroinflammatory diseases which exhibit combined inflammatory and anti-inflammatory functions. An increase in the expression of iNOS triggers M1 phenotype that secrete high concentrations of inflammatory cytokines, whil...
متن کاملRecent Advances in the Study of Bipolar/Rod-Shaped Microglia and their Roles in Neurodegeneration
Microglia are the resident immune cells of the central nervous system (CNS) and they contribute to primary inflammatory responses following CNS injuries. The morphology of microglia is closely associated with their functional activities. Most previous research efforts have attempted to delineate the role of ramified and amoeboid microglia in the pathogenesis of neurodegenerative diseases. In ad...
متن کاملThe association between laminin and microglial morphology in vitro
Microglia are immune cells in the central nervous system (CNS) that contribute to primary innate immune responses. The morphology of microglia is closely associated with their functional activities. The majority of microglial studies have focused on the ramified or amoeboid morphology; however, bipolar/rod-shaped microglia have recently received much attention. Bipolar/rod-shaped microglia form...
متن کاملOsteopontin Augments M2 Microglia Response and Separates M1- and M2-Polarized Microglial Activation in Permanent Focal Cerebral Ischemia
Background Focal cerebral ischemia induces distinct neuroinflammatory processes. We recently reported the extracellular phosphor-glyco-protein osteopontin (OPN) to directly affect primary microglia in vitro, promoting survival while shifting their inflammatory profile towards a more neutral phenotype. We here assessed the effects of OPN on microglia after stroke in vivo, with focus on infarct d...
متن کامل