A posteriori pointwise error estimation for compressible uid ows using adjoint parameters and Lagrange remainder
نویسندگان
چکیده
The pointwise error of a nite-di erence calculation of supersonic ow is discussed. The local truncation error is determined by a Taylor series with the remainder being in a Lagrange form. The contribution of the local truncation error to the total pointwise approximation error is estimated via adjoint parameters. It is demonstrated by numerical tests that the results of the numerical calculation of gasdynamics parameter at an observation point may be re ned and an error bound may be estimated. The results of numerical tests for the case of parabolized Navier–Stokes are presented as an illustration of the proposed method. Copyright ? 2004 John Wiley & Sons, Ltd.
منابع مشابه
A posteriori pointwise error estimation for compressible fluid flows using adjoint parameters and Lagrange remainder Short title: A posteriori pointwise error estimation using adjoint parameters
The pointwise error of a finite-difference calculation of supersonic flow is discussed. The local truncation error is determined by a Taylor series with the remainder being in a Lagrange form. The contribution of the local truncation error to the total pointwise approximation error is estimated via adjoint parameters. It is demonstrated by numerical tests that the results of the numerical calcu...
متن کاملRefinement of A Posteriori pointwise Error Estimation for Compressible Fluid Flows using adjoint parameters and Lagrange remainder
The pointwise error of a finite-difference calculation of supersonic flow is considered. The local truncation error is determined using a Taylor series with the remainder being in a Lagrange form. The contribution of the local truncation error to the total pointwise approximation error is estimated via adjoint parameters. It is demonstrated by numerical tests that the results of numerical calcu...
متن کاملOn a posteriori pointwise error estimation using adjoint temperature and Lagrange remainder
The pointwise estimation of heat conduction solution as a function of truncation error of a finite difference scheme is addressed. The truncation error is estimated using a Taylor series with the remainder in the Lagrange form. The contribution of the local error to the total pointwise error is estimated via an adjoint temperature. It is demonstrated that the results of numerical calculation of...
متن کاملAdjoint Correction and Bounding of Error Using Lagrange Form of Truncation Term
The a posteriori error evaluation based on differential approximation of a finitedifference scheme and adjoint equations is addressed. The differential approximation is composed of primal equations and a local truncation error determined by a Taylor series in Lagrange form. This approach provides the feasibility of both refining the solution and using the Holder inequality for asymptotic boundi...
متن کاملError estimation and adjoint based refinement for an adjoint consistent DG discretisation of the compressible Euler equations
Adjoint consistency – in addition to consistency – is the key requirement for discontinuous Galerkin discretisations to be of optimal order in L as well as measured in terms of target functionals. We provide a general framework for analysing adjoint consistency and introduce consistent modifications of target functionals. This framework is then used to derive an adjoint consistent discontinuous...
متن کامل