Increased inhibition of inward rectifier K+ channels by angiotensin II in small-diameter coronary artery of isoproterenol-induced hypertrophied model.

نویسندگان

  • Won Sun Park
  • Jae-Hong Ko
  • Nari Kim
  • Youn Kyoung Son
  • Sung Hyun Kang
  • Mohamad Warda
  • In Duk Jung
  • Yeong-Min Park
  • Jin Han
چکیده

OBJECTIVE We investigated the effects of angiotensin II (Ang II) on inward rectifier K+ (Kir) channels in small-diameter coronary arterial smooth muscle cells (SCASMCs) of control and isoproterenol (Iso)-induced hypertrophied rabbits. METHODS AND RESULTS Kir current amplitude and Kir channel protein expression were definitely lower in the Iso-induced hypertrophied model than in the control. In a pressurized arterial experiment, 15 mmol/L K+-induced vasodilation was greater in the control arteries than in the arteries of Iso-induced hypertrophied model. Ang II reduced the Kir current in a concentration-dependent manner, and this inhibition was greater in SCASMCs from Iso-induced hypertrophied model than from control. Although, there was no difference in the expression of Ang II type 2 (AT2) receptor between SCASMCs of control and Iso-induced hypertrophied model, the expression of Ang II type 1 (AT1) receptor and phosphorylated PKC alpha were greater in SCASMCs of Iso-induced hypertrophied model than of control. CONCLUSION Ang II inhibits Kir channels more prominently in SCASMCs of Iso-induced hypertrophied model owing to increases in the expression of AT1 receptor and the activation of PKC alpha. Our findings about the differential expression of Kir channels and different modulation of Kir channels by a vasoconstrictor (Ang II) in a hypertrophy model are important for better understanding the responsiveness of small-diameter arteries during hypertrophy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of Inward Rectifier Potassium Channels in High Salt Impairment of Hydrogen Sulfide-Induced Aortic Relaxation in Rats

Introduction: Hydrogen sulfide (H2S) plays a key role in the regulation of vascular tone and protection of blood vessels against endothelial dysfunction. Since the mechanism of salt impairing H2S-induced vascular relaxation is not fully clear, therefore this study was designed to investigate the role of potassium (K+) channels in the vasodilatory effects of exogenous H2S in rat aortic rings.&nb...

متن کامل

Regulation of the instantaneous inward rectifier and the delayed outward rectifier potassium channels by Captopril and Angiotensin II via the Phosphoinositide-3 kinase pathway in volume-overload-induced hypertrophied cardiac myocytes

BACKGROUND Early development of cardiac hypertrophy may be beneficial but sustained hypertrophic activation leads to myocardial dysfunction. Regulation of the repolarizing currents can be modulated by the activation of humoral factors, such as angiotensin II (ANG II) through protein kinases. The aim of this work is to assess the regulation of IK and IK1 by ANG II through the PI3-K pathway in hy...

متن کامل

Activation of inward rectifier K+ channels by hypoxia in rabbit coronary arterial smooth muscle cells.

We examined the effects of acute hypoxia on Ba2+-sensitive inward rectifier K+ (K(IR)) current in rabbit coronary arterial smooth muscle cells. The amplitudes of K(IR) current was definitely higher in the cells from small-diameter (<100 microm) coronary arterial smooth muscle cells (SCASMC, -12.8 +/- 1.3 pA/pF at -140 mV) than those in large-diameter coronary arterial smooth muscle cells (>200 ...

متن کامل

Potassium ions as vasodilators: role of inward rectifier potassium channels.

External potassium ions have long been known as mediators of vasodilation of several vascular beds, including the coronary and cerebral circulations.1–6 Indeed, potassium ions have been viewed as communicators of the metabolic state of the cells that surround blood vessels. For example, release of potassium ions from neurons is communicated through glial cells to regulate cerebral artery diamet...

متن کامل

Beta-adrenoceptor-mediated responsiveness of human internal mammary artery

The internal mammary artery (IMA) is currently the preferred conduit for myocardial revascularization. However, pre-operative vasospasm and a hypoperfusion state during maximal exercise may limit its use as a bypass graft. The mechanism of spasm has not been clearly defined. Since β-adrenoceptor activation plays a major role in vasorelaxation, the present study was carried out to investigate th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 27 8  شماره 

صفحات  -

تاریخ انتشار 2007