Next-Generation Sequencing Identifies the Danforth's Short Tail Mouse Mutation as a Retrotransposon Insertion Affecting Ptf1a Expression

نویسندگان

  • Christopher N. Vlangos
  • Amanda N. Siuniak
  • Dan Robinson
  • Arul M. Chinnaiyan
  • Robert H. Lyons
  • James D. Cavalcoli
  • Catherine E. Keegan
چکیده

The semidominant Danforth's short tail (Sd) mutation arose spontaneously in the 1920s. The homozygous Sd phenotype includes severe malformations of the axial skeleton with an absent tail, kidney agenesis, anal atresia, and persistent cloaca. The Sd mutant phenotype mirrors features seen in human caudal malformation syndromes including urorectal septum malformation, caudal regression, VACTERL association, and persistent cloaca. The Sd mutation was previously mapped to a 0.9 cM region on mouse chromosome 2qA3. We performed Sanger sequencing of exons and intron/exon boundaries mapping to the Sd critical region and did not identify any mutations. We then performed DNA enrichment/capture followed by next-generation sequencing (NGS) of the critical genomic region. Standard bioinformatic analysis of paired-end sequence data did not reveal any causative mutations. Interrogation of reads that had been discarded because only a single end mapped correctly to the Sd locus identified an early transposon (ETn) retroviral insertion at the Sd locus, located 12.5 kb upstream of the Ptf1a gene. We show that Ptf1a expression is significantly upregulated in Sd mutant embryos at E9.5. The identification of the Sd mutation will lead to improved understanding of the developmental pathways that are misregulated in human caudal malformation syndromes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Retrotransposon Insertion in the 5′ Regulatory Domain of Ptf1a Results in Ectopic Gene Expression and Multiple Congenital Defects in Danforth's Short Tail Mouse

Danforth's short tail mutant (Sd) mouse, first described in 1930, is a classic spontaneous mutant exhibiting defects of the axial skeleton, hindgut, and urogenital system. We used meiotic mapping in 1,497 segregants to localize the mutation to a 42.8-kb intergenic segment on chromosome 2. Resequencing of this region identified an 8.5-kb early retrotransposon (ETn) insertion within the highly co...

متن کامل

Ectopic Expression of Ptf1a Induces Spinal Defects, Urogenital Defects, and Anorectal Malformations in Danforth's Short Tail Mice

Danforth's short tail (Sd) is a semidominant mutation on mouse chromosome 2, characterized by spinal defects, urogenital defects, and anorectal malformations. However, the gene responsible for the Sd phenotype was unknown. In this study, we identified the molecular basis of the Sd mutation. By positional cloning, we identified the insertion of an early transposon in the Sd candidate locus appro...

متن کامل

Mutations in PTF1A are not a common cause for human VATER/VACTERL association or neural tube defects mirroring Danforth's short tail mouse.

Danforth's short tail (Sd) mutant mice exhibit defects of the neural tube and other abnormalities, which are similar to the human vertebral anomalies, anal atresia, cardiac defects, tracheosophageal fistula and/or esophageal atresia, renal and radial abnormalities, and limb defects (VATER/VACTERL) association, including defects of the hindgut. Sd has been shown to underlie ectopic gene expressi...

متن کامل

Retrotransposon Activates Ectopic Ptf1 Expression: A Short Tail

In 1925, Charles Danforth wrote about ‘‘mice with six legs [that] appeared about two years ago in a stock which had descended from five individuals and had been inbred for several generations’’ [1]. Danforth studied this ‘‘duplicitas posterior’’ (including duplication of internal and external urogenital organs, with quadrilateral symmetry) and its genetic transmission for several years [2], but...

متن کامل

I-37: Establishing High Resolution Genomic Profiles of Single Cells Using Microarray and Next-Generation Sequencing Technologies

The nature and pace of genome mutation is largely unknown. Standard methods to investigate DNA-mutation rely on arraying or sequencing DNA from a population of cells, hence the genetic composition of individual cells is lost and de novo mutation in cell(s) is concealed within the bulk signal. We developed methods based on (SNP-) arraying and next-generation sequencing of single-cell whole-genom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2013