Probabilistic modeling of DNA mismatch repair effects on cell cycle dynamics and iododeoxyuridine-DNA incorporation.

نویسندگان

  • Evren Gurkan
  • Jane E Schupp
  • Mohammad A Aziz
  • Timothy J Kinsella
  • Kenneth A Loparo
چکیده

Previous studies in our laboratory have described increased and preferential radiosensitization of mismatch repair-deficient (MMR(-)) HCT116 colon cancer cells with 5-iododeoxyuridine (IUdR). Indeed, our studies showed that MMR is involved in the repair (removal) of IUdR-DNA, principally the G:IU mispair. Consequently, we have shown that MMR(-) cells incorporate 25% to 42% more IUdR than MMR(+) cells, and that IUdR and ionizing radiation (IR) interact to produce up to 3-fold greater cytotoxicity in MMR(-) cells. The present study uses the integration of probabilistic mathematical models and experimental data on MMR(-) versus MMR(+) cells to describe the effects of IUdR incorporation upon the cell cycle for the purpose of increasing IUdR-mediated radiosensitivity in MMR(-) cells. Two computational models have been developed. The first is a stochastic model of the progression of cell cycle states, which is applied to experimental data for two synchronized isogenic MMR(+) and MMR(-) colon cancer cell lines treated with and without IUdR. The second model defines the relation between the percentage of cells in the different cell cycle states and the corresponding IUdR-DNA incorporation at a particular time point. These models can be combined to predict IUdR-DNA incorporation at any time in the cell cycle. These mathematical models will be modified and used to maximize therapeutic gain in MMR(-) tumors versus MMR(+) normal tissues by predicting the optimal dose of IUdR and optimal timing for IR treatment to increase the synergistic action using xenograft models and, later, in clinical trials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integration of Principles of Systems Biology and Radiation Biology: Toward Development of in silico Models to Optimize IUdR-Mediated Radiosensitization of DNA Mismatch Repair Deficient (Damage Tolerant) Human Cancers

Over the last 7 years, we have focused our experimental and computational research efforts on improving our understanding of the biochemical, molecular, and cellular processing of iododeoxyuridine (IUdR) and ionizing radiation (IR) induced DNA base damage by DNA mismatch repair (MMR). These coordinated research efforts, sponsored by the National Cancer Institute Integrative Cancer Biology Progr...

متن کامل

The interaction between two radiosensitizers: 5-iododeoxyuridine and caffeine.

5-Iododeoxyuridine (IUdR) and caffeine are recognized as potential radiosensitizers with different mechanisms of interaction with ionizing radiation (IR). To assess the interaction of these two types of radiosensitizers, we compared treatment responses to these drugs alone and in combination with IR in two p53-proficient and p53-deficient pairs of human colon cancer cell lines (HCT116 versus HC...

متن کامل

BRCA1 activates a G2-M cell cycle checkpoint following 6-thioguanine-induced DNA mismatch damage.

Human DNA mismatch repair (MMR) is involved in the response to certain chemotherapy drugs, including 6-thioguanine (6-TG). Consistently, MMR-deficient human tumor cells show resistance to 6-TG damage as manifested by a reduced G(2)-M arrest and decreased apoptosis. In this study, we investigate the role of the BRCA1 protein in modulating a 6-TG-induced MMR damage response, using an isogenic hum...

متن کامل

ON THE EFFECTS OF ARA-A AND ARA-C ON X-RAY INDUCED DNA LESIONS IN NORMAL HUMAN AND A-T CELLS: SIMILARITIES AND DIFFERENCES.

A better understanding of the mechanism of chromosomal aberration formation could be obtained by using DNA repair inhibitors. Immortalized normal human (MRC 5 SVI) and ataxia telangiectasia ( AT 5 BIV A ) fibroblastic cell lines were treated with adenosine arabinoside (ara-A) and cytosine arabinoside (ara-C), both potent inhibitors of DNA dsb repair, alone or in combination with x-rays at ...

متن کامل

اثرات گاز کلر بر سیکل سلولی و محتوی DNA گلبول‌های سفید موش سوری The Effects of Chlorine on Cell Cycle and DNA Content of WBC in Mice

    Background & Aim: Chlorine has been known as a mucus membranes and respiratory tract irritant. This gas can increase free radicals which cause cell damage. The aim of the present study was to measure DNA content and cell cycle in white blood cells after chronic chlorine poisoning. Materials & Methods: A clinical experimental study was carried out on 80 male mice(40 mice as sample and 40 as ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 67 22  شماره 

صفحات  -

تاریخ انتشار 2007