Switching on pluripotency: a perspective on the biological requirement of Nanog.
نویسندگان
چکیده
Pluripotency is a transient cellular state during early development which can be recreated in vitro by direct reprogramming. The molecular mechanisms driving entry into and exit from the pluripotent state are the subject of intense research interest. Here, we review the role of the homeodomain-containing transcription factor Nanog in mammalian embryology and induced pluripotency. Nanog was originally thought to be confined to the maintenance of pluripotency, but recent insights from genetic studies uncovered a new biological function. Embryonic stem cells deficient in Nanog alleles are more prone to differentiate but do not lose pluripotency per se. Instead, Nanog is transiently required for the specification of the naive pluripotent epiblast and development of primordial germ cells. Nanog is also essential to finalize somatic cell reprogramming during induction of pluripotency. We propose that this unique transcription factor acts as a molecular switch to turn on the naive pluripotent programme in mammalian cells. In this context, the capacity of Nanog to resist differentiation can be regarded as recapitulation of effects normally associated with the specification of pluripotency. Pertinent questions are how Nanog specifies naive pluripotency and whether this mechanism is evolutionarily conserved.
منابع مشابه
P-106: Comparative Expression of The Stemness Gene Oct-4, Nanog, Sox-2 and Rex-1 in Normal Endometrium and in Endometriosis
Background Endometriosis is a gynecological disease defined as the presence of endometrial tissue outside the uterine cavity, which caused by various factors. Recent evidences support the presence of endometrial stem cells and their possible involvement in endometriosis. Related studies mainly focus on stemness-related genes, and pluripotency markers may play a role in the etiology of endometri...
متن کاملP-67: Quantitative Expression of Pluripotency Specific-Genes in Mouse Blastocysts Produced by In Vitro Fertilization
Background: The efficiency of in vitro fertilization (IVF) is still low to be developed to blastocyst stage probably because of environmental conditions. It is likely that in vitro environment can not exactly mimic in vivo environment due to differences in media, metabolic content, atmospheric composition, temperature and pH. Therefore it may affect embryo quality by changing in embryo gene exp...
متن کاملRequirement of Nanog dimerization for stem cell self-renewal and pluripotency.
Pluripotency of embryonic stem (ES) cells is maintained by transcription factors that form a highly interconnected protein interaction network surrounding the homeobox protein Nanog. Enforced expression of Nanog in mouse ES (mES) cells promotes self-renewal and alleviates their requirement for leukemia inhibitory factor (LIF). Understanding molecular mechanisms by which Nanog functions should i...
متن کاملP-99: Evaluation of Pluripotency Markers of Mouse Endometrial Tissue in Different Stages of Estrous Cycle
Background: It is assumed that adult stem/progenitor cells are responsible for cycling remodeling of the uterus endometrium throughout the reproductive life of the female. This study aimed to identify and localize stem/progenitor cells in the mice uterus using immunohistochemistry. Materials and Methods: 6-8 weeks old virgin female NMRI mice were submitted to the vaginal smear examination to de...
متن کاملAssess The Pluripotency of Caprine Umbilical Cord Wharton’s Jelly Mesenchymal Cells By RT-PCR Analysis of Early Transcription Factor Nanog
Objective- In the present study we investigated the isolation protocol, population doubling time (PDT) and the expression of a pluripotential gene by RT-PCR analysis of early transcription factor Nanog in caprine umbilical cord (CUC) Wharton's jelly mesenchymal cells (WJMCs). Design- Experimental in vitro study. Animals- Four mix breed goat. Procedures- CUCs were collected from abattoi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions of the Royal Society of London. Series B, Biological sciences
دوره 366 1575 شماره
صفحات -
تاریخ انتشار 2011