On the Null-controllability of the Heat Equation in Unbounded Domains

نویسندگان

  • LUC MILLER
  • L. MILLER
چکیده

We make two remarks about the null-controllability of the heat equation with Dirichlet condition in unbounded domains. Firstly, we give a geometric necessary condition (for interior null-controllability in the Euclidean setting) which implies that one can not go infinitely far away from the control region without tending to the boundary (if any), but also applies when the distance to the control region is bounded. The proof builds on heat kernel estimates. Secondly, we describe a class of null-controllable heat equations on unbounded product domains. Elementary examples include an infinite strip in the plane controlled from one boundary and an infinite rod controlled from an internal infinite rod. The proof combines earlier results on compact manifolds with a new lemma saying that the null-controllability of an abstract control system and its null-controllability cost are not changed by taking its tensor product with a system generated by a non-positive self-adjoint operator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Persistent Regional Null Controllability for a Class of Degenerate Parabolic Equations

Motivated by physical models and the so-called Crocco equation, we study the controllability properties of a class of degenerate parabolic equations. Due to degeneracy, classical null controllability results do not hold for this problem in general. First, we prove that we can drive the solution to rest at time T in a suitable subset of the space domain (regional null controllability). However, ...

متن کامل

Remarks on Null Controllability for Semilinear Heat Equation in Moving Domains

We investigate in this article the null controllability for the semilinear heat operator u − ∆u + f(u) in a domain which boundary is moving with the time t.

متن کامل

Solution of Thermo-Fluid problems in Bounded Domains via the Numerical Panel Method

The classical panel method has been extensively used in external aerodynamics to calculate ideal flow fields around moving vehicles or stationary structures in unbounded domains. However, the panel method, as a somewhat simpler implementation of the boundary element method, has rarely been employed to solve problems in closed complex domains. This paper aims at filling this gap and discusses th...

متن کامل

Pullback D-attractors for non-autonomous partly dissipative reaction-diffusion equations in unbounded domains

At present paper, we establish the existence of pullback $mathcal{D}$-attractor for the process associated with non-autonomous partly dissipative reaction-diffusion equation in $L^2(mathbb{R}^n)times L^2(mathbb{R}^n)$. In order to do this, by energy equation method we show that the process, which possesses a pullback $mathcal{D}$-absorbing set, is pullback $widehat{D}_0$-asymptotically compact.

متن کامل

Controllability of the time discrete heat equation

Abstract. In this paper we study the controllability of an Euler Implicit time discrete heat equation in a bounded domain with a local internal controller. We prove that, based on Lebeau-Robbiano’s time iteration method, the projection in appropriate filtered space is null controllable with uniformly bounded control. In this way, the well-known null-controllability property of the heat equation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004