Linker 2 of the eukaryotic pre-ribosomal processing factor Mrd1p is an essential interdomain functionally coupled to upstream RNA Binding Domain 2 (RBD2)
نویسندگان
چکیده
Ribosome synthesis is an essential process in all cells. In Sacharomyces cerevisiae, the precursor rRNA, 35S pre-rRNA, is folded and assembled into a 90S pre-ribosomal complex. The 40S ribosomal subunit is processed from the pre-ribosomal complex. This requires concerted action of small nucleolar RNAs, such as U3 snoRNA, and a large number of trans-acting factors. Mrd1p, one of the essential small ribosomal subunit synthesis factors is required for cleavage of the 35S pre-rRNA to generate 18S rRNA of the small ribosomal subunit. Mrd1p is evolutionary conserved in all eukaryotes and in yeast it contains five RNA Binding Domains (RBDs) separated by linker regions. One of these linkers, Linker 2 between RBD2 and RBD3, is conserved in length, predicted to be structured and contains conserved clusters of amino acid residues. In this report, we have analysed Linker 2 mutations and demonstrate that it is essential for Mrd1p function during pre-ribosomal processing. Extensive changes of amino acid residues as well as specific changes of conserved clusters of amino acid residues were found to be incompatible with synthesis of pre-40S ribosomes and cell growth. In addition, gross changes in primary sequence of Linker 2 resulted in Mrd1p instability, leading to degradation of the N-terminal part of the protein. Our data indicates that Linker 2 is functionally coupled to RBD2 and argues for that these domains constitute a functional module in Mrd1p. We conclude that Linker 2 has an essential role for Mrd1p beyond just providing a defined length between RBD2 and RBD3.
منابع مشابه
Multiple RNA interactions position Mrd1 at the site of the small subunit pseudoknot within the 90S pre-ribosome
Ribosomal subunit biogenesis in eukaryotes is a complex multistep process. Mrd1 is an essential and conserved small (40S) ribosomal subunit synthesis factor that is required for early cleavages in the 35S pre-ribosomal RNA (rRNA). Yeast Mrd1 contains five RNA-binding domains (RBDs), all of which are necessary for optimal function of the protein. Proteomic data showed that Mrd1 is part of the ea...
متن کاملMrd1p binds to pre-rRNA early during transcription independent of U3 snoRNA and is required for compaction of the pre-rRNA into small subunit processomes
In Saccharomyces cerevisiae, synthesis of the small ribosomal subunit requires assembly of the 35S pre-rRNA into a 90S preribosomal complex. SnoRNAs, including U3 snoRNA, and many trans-acting proteins are required for the ordered assembly and function of the 90S preribosomal complex. Here, we show that the conserved protein Mrd1p binds to the pre-rRNA early during transcription and is required...
متن کاملHuman splicing factor ASF/SF2 encodes for a repressor domain required for its inhibitory activity on pre-mRNA splicing.
The essential splicing factor ASF/SF2 activates or represses splicing depending on where on the pre-mRNA it binds. We have shown previously that ASF/SF2 inhibits adenovirus IIIa pre-mRNA splicing by binding to an intronic repressor element. Here we used MS2-ASF/SF2 fusion proteins to show that the second RNA binding domain (RBD2) is both necessary and sufficient for the splicing repressor funct...
متن کاملThe second RNA-binding domain of the human splicing factor ASF/SF2 is the critical domain controlling adenovirus E1A alternative 5'-splice site selection.
The human splicing factor ASF/SF2 (alternative splicing factor/splicing factor 2) is modular in structure with two RNA-binding domains (RBD1 and RBD2) and a C-terminal domain rich in arginine-serine dipeptide repeats. ASF/SF2 is an essential splicing factor that also functions as an important regulator of alternative splicing. In adenovirus E1A (early region 1A) alternative pre-mRNA splicing, A...
متن کاملChemical shift mapping of the RNA-binding interface of the multiple-RBD protein sex-lethal.
The Drosophila protein Sex-lethal (Sxl) contains two RNP consensus-type RNA-binding domains (RBDs) separated by a short linker sequence. Both domains are essential for high-affinity binding to the single-stranded polypyrimidine tract (PPT) within the regulated 3' splice site of the transformer (tra) pre-mRNA. In this paper, the effect of RNA binding to a protein fragment containing both RBDs fr...
متن کامل