Neural Network Earnings per Share Forecasting Models: A Comparative Analysis of Alternative Methods
نویسندگان
چکیده
In this paper, we present a comparative analysis of the forecasting accuracy of univariate and multivariate linear models that incorporate fundamental accounting variables (i.e., inventory, accounts receivable, and so on) with the forecast accuracy of neural network models. Unique to this study is the focus of our comparison on the multivariate models to examine whether the neural network models incorporating the fundamental accounting variables can generate more accurate forecasts of future earnings than the models assuming a linear combination of these same variables. We investigate four types of models: univariate-linear, multivariate-linear, univariate-neural network, and multivariate-neural network using a sample of 283 firms spanning 41 industries. This study shows that the application of the neural network approach incorporating fundamental accounting variables results in forecasts that are more accurate than linear forecasting models. The results also reveal limitations of the forecasting capacity of investors in the security market when compared to neural network models. Subject Areas: Methodological Areas: Artificial Neural Network, Comparative Analysis, and Forecasting Methods; Functional Areas: Accounting and Finance.
منابع مشابه
Comparative Analysis of Short-Term Price Forecasting Models: Iran Electricity Market
As the electricity industry has changed and became more competitive, the electricity price forecasting has become more important. Investors need to estimate future prices in order to take proper strategy to maintain their market share and to maximize their profits. In the economic paradigm, this goal is pursued using econometric models. The validity of these models is judged by their forecastin...
متن کاملComparative Study of Static and Dynamic Artificial Neural Network Models in Forecasting of Tehran Stock Exchange
During the recent decades, neural network models have been focused upon by researchers due to their more real performance and on this basis, different types of these models have been used in forecasting. Now, there is a question that which kind of these models has more explanatory power in forecasting the future processes of the stock. In line with this, the present paper made a comparison betw...
متن کاملAssessing model efficacy in forecasting EPS of Chinese firms using fundamental accounting variables: a comparative study
In this paper, we compare the forecasting accuracy of two neural network models in forecasting earnings per share of Chinese listed companies based upon fundamental accounting variables. In one neural network model, weights estimated by back propagation were utilised, and in the other model a genetic algorithm was utilised. Based upon a sample of 723 Chinese companies in 22 industries over a te...
متن کاملForecasting EPS of Chinese Listed Companies Using Neural Network with Genetic Algorithm
In this paper we use neural network models to forecast earnings per share (EPS) of Chinese listed companies using fundamental accounting variables. The sample includes 723 Chinese companies in 22 industries over 10 years. The result shows that the neural network model with weights estimated with genetic algorithm (GA) outperforms the neural network with weights estimated with back propagation (...
متن کاملP/E Modeling and Prediction of Firms Listed on the Tehran Stock Exchange; a New Approach to Harmony Search Algorithm and Neural Network Hybridization
Investors and other contributors to stock exchange need a variety of tools, measures, and information in order to make decisions. One of the most common tools and criteria of decision makers is price-to earnings per share ratio. As a result, investors are in pursuit of ways to have a better assessment and forecast of price and dividends and get the highest returns on their investment. Previous ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Decision Sciences
دوره 35 شماره
صفحات -
تاریخ انتشار 2004